Annex

Index

T =L U] LT PP PTPRR PP 4
1. ANNeX: Use Cases DiagramsS.....cciiiiiiiuiuiiiiiieeeeeeeettttiiiiiiisieseeeeeeeeeeenssnnsasssssessessesesmssssmnnssness 5
2. Annex: Use Cases Textual Specification.........ccccoeciiiiiiiiiciiiiiic e 9
: Medical HiStOry USE CASESuuviiiieieiiiiiiieeeeeiiiteee e e eeittteeeseesiatateeeeeessnssaaeesessnssaeeeseesnnssenes 9
AO0L: VieWing MediCAl HISTOIYuuiiiuicuiiieeeieeeieeee e e sectireee e e esctareee e e sesrtaaeesesssnsraeeeaessnes 9
AO02: Viewing Chronic CONGItIONocceuueeeeiiiciiieeee e cecieeee e escaae e e e e eetaaee e e s s ssaaraeeeaeseanes 9
A03: Managing CRronic CONAILIONccuueeeeeeeeiiiieee e cccieeee e eecee e e e e eseraaee e e e s eenaraeeeaeseanes 9
AO04: VIEWING VACCINATIONScuvvvuueiaieeeeeiieiiiiiiiiiiisiee e e e eeeeeeettesiaiisseseseeeseesesessnnaansasseseaanees 10
AO05: Managing VOCCINATIONSceeeeeeeiieeieiiiiiiiieieeeeeeeeerettttsiiisseseseeeeeeseenrennaannsssesaaaaees 10
ADG: VIEWING AIIEIGIESvvveeeeeeiieeie ettt e e sttt e e e e s e e e e s e e aabae e e e s essaraaeeeeenn 10
AO07: MANAGING AIEIGIESvveeeeeeeiieeee ettt ettt s e e e e s e e e e s saaa e e e e s e s sabaaeaeeean 11
AO08: VIieWing FAMIIY HiSEOIYcccuuueieiiieeiiiiiee e eeccitete e e e sttt e e e s ssare e e e e s e saaaeee s s e s nsbaaeeeeens 11
A09: Managing FAMIIY HISTOIYeuiiiiiciiiieeeeeecciieees e eeciteee e e e ssreee e e s e saraeee s s e snaaaeeaaeaas 11
AL0: Viewing Health Problemsouccuieieiiiiciiiiiee e eeciiteee e eseiveee e s s s svaee e e s s saaraeeaeeeas 12
A11: Managing HeaIth ProbBIEMS............ccccuuueiiiiiiiiiiiiee e eeiiteee e essreee e e s s saae e e e s e saaaaeeaaeeas 12
A12: Viewing Current and Past MediCationc..uuuiieeccuveeeeiieiiiiiieeesecciieee e escveeeea e 13
A13: Viewing Diagnosis INfOrmationuuouecciuueiiieiiiiiiieeeeescireeee e sssreee e e s essaraeeea e 13
Al14: Managing Diagnosis INfOrMaALioNceeeccuveieiiiiciiieee e et e e esreee e e e siraeeea e 13
AL5: Viewing Treatment PIANouiiiicciieieeieiciiiieee s esciteeee s sssareee e s s e ssaeeeessssssseeeaesens 14
A16: Viewing Medical RecOMMENAGLIONSccccuveeeiieiciiiiieieiieiiiieeeeesescveeee e e e cavaeee e 14
A17: Managing Medical RecOmMmendationc..uueeeeceuueeeeeieiiiieeeeeseccieeeeeeessinneeeae s 14
A18: Viewing Medical PreSCriptioncccuueuiiiiiciiieeiesseiccieeeesessiveeeessssvaaeeessessssseesaeens 15
A19: Requesting Prescriptions RENEWAL..............ccccuuuiiiiiiciiiiiieeeeeiciieeee s eseveeee e s s ssivaeeee e 15
A20: MANAGING MEAICINES ...cceeeeeeeeeeeeeee ettt ee e et e e e e e e e e e e e e e e e e e s s s e s se e nnsnsresreanes 15
1 Personal Data USE CaSesueeiiuieeiiiieieniieeeeiteeesttr e e stee e e st e e sire e e e sbeeessabeeessnreeessareeessanees 16
BO1: VieWing PersonQl DALcccuuuiiiiieiiuiieiieiiiiiitee s e essittee e s e ssreee e s e s savaeeea s s s ssasseeeas 16
BO4: Managing Optional DELAIISceuiecuueeieiiiiiiiiie e escttee e seee e e s svree e e s e e sraeeeas 16
BO5: Managing RequUIred DELQIIScouecuuueiiiiiiiiiiiieeeescciteee e esreeee e s e ssvreee e s e e ssnaeeeas 16

AV o] oo T 1] 1 0 g V=Y Y o U I - 1Y SRS 17
CO1: Scheduling APPOINTMENTcoeeeeeeeeeee et e sanas 17
CO2: VieWing APPOINTIMENLSceeueeiiiiiiiiiiiiiei ettt ettt et e e e e e e e e e e e e e e e e e s e e ssaaas 17
CO3: Manag@ing APPOINTMENTSc.ceuuiiiiiiiiiiiieeeieee ettt e et e e e e e e e e e e e e e e e e e s s assaanas 17

(00 @ T-Tol {1 o o 1 SRR 18

CO5: Viewing Schedule AVGIlADITILYocccuveeeieiiiiieiie e a e e e 18
CO6: SEAIChING DY DOCLONuvveeeieieiiiieee e eccteee e es et e e e et e e e e e s baae e e e e s sabbaea e e eesnsaeeeas 18
CO7:5€AICRING BY DATE........uvvvvvveeeeeeeeieeeieeeeeeeeeeeeeeeeeeesee e e s arrereeeereesaaaaaeeaeeeesesseesnans 18
Annex: Informal Functional REQUIrEMENTSceiiiiiiiiiiiie et 19
3.1. In-Card Requirements (server applications)ccccuveeeeiiiciiiieee e 19
LCT= a1 T - | T P T PO PP TP OP PP PTOPUPPROTPPPRIN 19
YTl U]) xS PP PPPPPPPPPPTP N 19
PErSONAl Data ..cieeeiiiiiiiiie ettt ettt e st e st e st e e s bt e e s eabae e e s baeeesanaes 20
A =T =4 =TSP PPR 21
RV Lol ol =P 21
Diagnostics (dependent to APPOINTMENTS) ..ocvveeeiiieeiiiiie et e e e e e 22
Treatments (dependent to APPOINTMENTS)uviieciiieiiiiee e 22
Medicines (dependent tO TreatMENTS).......ccccueieeiiieeeiiee e e rrre e e rre e e 23
ChroniC CONAITIONS ...veieiiieeeiiiie ettt ettt ettt e e st e e st e e sbbe e e snbeessbbeeesbaeeesans 23
FAN o] o To)1 011 41T o1 £ FO PP PP PPPPPPPTPP TN 24
3.2. Off-Card Requirements (client applications)cccceveeeiiiieeeriiee e 25
3.3, General System ReQUIFEMENTS ...cccuviiieieiiiiiiieee e eeciiteee et e e e e e esaree e e e e s s s sbraeeeesseaees 26
Annex: Semi-FOrmal REQUIFEMENTSuiiiiiiiiiiiie et e e e e e 27
Personal Data (Semi-Formal REQUINEMENTS)ccevveeeeeiiieeiiieeeciieeeeiree e site e e stre e e eree e serae e 27
Allergies (Semi-FOrmal REQUIFEMENTS)cccuieieiiiieeiiieeecieeeecie e e estee e sete e e esete e e eserreeesnsaeeeennes 27
Vaccines (Semi-Formal REQUITEMENTS)......cccuiiieiiieeeiieeeeciee e erre e ertee e e e e eseve e e srre e e srae e e eaens 28
Diagnostics (Semi-Formal REQUIrEMENTS)ueviiviiieiiiiiecciiee e cres et sre e ere e e ere e seree e 28
Treatments (Semi-FOrmal REQUIrEMENTS)uveieiiiieieiiieeciiee e eree et stre e e e e enre e s naeeeenes 28
Medicines (Semi-FOrmal REQUIFEMENTS)coecuuriiiieeieiiiieee ettt e e e e 29
Chronic Conditions (Semi-Formal ReqUIremMeNts)ccccvveeiieeeiiiieeecieeeecieeeeeree e eevee e eeeee s 29
Appointments (Semi-Formal REQUIr€MENTS)ceeeiiciiiiiieeicciieiiee et evaaee e e 30
ANNEX: Class INVAITANTSueeiiiieie et e e s e e st e s e e snnee e snreee s 30
General/Common (Class INVANANTS)coiiueeieiieeeeeeee ettt eere e et eeeeteeeeeareeean 30
Personal Data (Class INVArIANTS)eeccccciiieie e e e ettt e e et e e e e et e e e e e e e aara e e e e e e e aaraeeas 31
Allergies (Class INVAriaNTS)uueieiiiiiiieee ettt e e e et e e e e e et ee e e e eesaaaeeeeeeesnsraseaaeaas 31
Vaccings (Class INVArIANTS)ueiiiiiiiiiiieie et e e e et ree e e e e e satre e e e e e eeaasraeeaaeean 31
Diagnostics (Class INVAIANTS)eiiiiiiiiiiiiee ettt e e e e e et e e e e e e e eaarae e e e e e eanreeeas 31
Treatments (Class INVArIANTS)cceiiiiiiiieie ettt e e et e e e e e are e e e e e e e anreeeeeeeensraeeas 32

Medicines (Class INVATIANTS)uuuuriiiiiiiiiiiiiiieeeeeeeeeeceeeeeeeeeeee e rrrerreereeeeeeeeeeeeeeeesesesnnnns 32

Chronic Conditions (Class INVAriants)ccooeeieeeeiiuiriiiriiiieeeeeeeeeeeeeeeeeeeeeee et eeeeeeesseeesnansrsnreenes 32
Appointments (Class INVArianTs)........ccccueeiiiiiiiiiee et rre e e e ebre e e sabre e e saraeeeearas 32
7. ANNEX: Class DIagramsS....ccccccuuuiieieeiiiiiieeeeeeeiiiree e e e e siirreeeeesssabbreeeesesssbaaeeeeesssssaeeesessnnsseees 33
T e Yo 1Y, = o U - | P PP 40
8.1. Java Card Installation and USAEcceeivciiiiieeiiiiiiiiieee ettt irae e e e e e 40
8.1.1. Installation and setup of Java Cardcccveeveiiiciiiiiie e 40
8.1.2. UsSiNg the Java Card........c..uueeiiiiiiiiiiee ettt e e s srr e e e 42
8.2. JMLINstallation and USAZEcceiiecuriiiiieiiiiiiiiee e e e eciiieee e ertree e e e e saraee e e e s s saaeae e e e s snnnes 44
8.2.1. Installation and setup Of JIML.......uuiiiiiiiiiiiiiee e 44
8.2.2. Using the JML CommOoN TOOIS.......uuiiiiiiiiiiiiee et srree e 46
8.2.3. (04 T=T g o To K30 {o T gl 1Y | PR 46
Figures
Figure i. Medical History Use Cases SUb-Diagramcccccoeeciiieieiiiiciieeee e e e e 5
Figure ii. Personal Data Use Cases SUD-DIagramc.ccceeeeeeiiiiiieececciieee et ervre e e e e 6
Figure iii. Appointments Use Cases SUD-Diagrami........ccccccvvuuriiiiiiiiiireeiieeeeeeeeee e e e e e eeeesessesnnnennnnns 7
Figure iv. System Administration Use Cases SUD-DIiagramccccceeeeeeierieeeeeeeeeeeeeeeceeecccneennnnns 8
Figure v. CardServices module Class DIagramccccuuieeeeeiiiiieeeeeserciiieeeessssiineeeesssnreneesesssnnnes 33
Figure vi. Common module Class DIiagramceeiiiccuiiieieiiiiiiireeeeeseciireeeessssvineeeesssssseeesesssnnnes 34
Figure vii. Allergies module Class DIiagramceeiiicciiieeeeiiiiiirieeeeseciireeeeesssrereeeeesssrraeeeessennnes 34
Figure viii. Appointments module Class DIagramceeeeeveciiieeeeeiciiiieee e ecciire e e esctrre e e e e e eaees 35
Figure ix. Diagnostics module Class DIagramcccccvieeeeeiiiiiieeeeeeeeciieeeeeeeecieeeeeeseenrsaeeeeeeennes 36
Figure x. Medicines module Class DIiagramccooeeiiieeiiieciccrrrrrrrrrre 37
Figure xi. Personal module Class DIiagramccccoiiiiiiii i iicccccerrrrrrrrre e e e e e e e e e e e e e e e 38
Figure xii. Treatments module Class DIagramcccuuieeeeiiiiiiiiieeessiciiieee e sesirreeee s ssbeeeeeessssnnes 39
Figure xiii. Vaccines module Class Diagramceeeicciiiieeiiiiiiiieieeeseeciireeeessssiieeeeesssveneesesssnnnes 40

file:///C:/Users/João%20Pestana/Desktop/Tese/JML-JCRMI%20Thesis%20Document/Annex.docx%23_Toc246925464
file:///C:/Users/João%20Pestana/Desktop/Tese/JML-JCRMI%20Thesis%20Document/Annex.docx%23_Toc246925465
file:///C:/Users/João%20Pestana/Desktop/Tese/JML-JCRMI%20Thesis%20Document/Annex.docx%23_Toc246925467

saupIpaw
BuiBeueyy 10z

|emauas uonduasaid
Bunsanbay ‘614

BuiBeueyy p 1

UONEPUBLIWOOS) [EDIPaLU

swejqoid yjesy
Bulbeuepy | 1#

uoneuuoju) sisoubelq uopeuoju| sisoubeiq

Uopipuod ojuoa

SUOREPUBLULLODB]

aspusIxen

r siemsuss uonduosasd 1senbas ued 8y 1ng ‘vorissiuuad Bulpes: sey Ao usied 8y

wuswalnbaly

waled

vonduosaep [eseueb ay) Jou ‘uopeubisep e seas fuo Juened ay)
«uawanba»

sa|bis|e

so|bss|e
Buimalp, ‘90

BuiBeuepy -L04 >

«SpUBIXEN

«SpuaIXar

«SpuUas

Bumal, “Spuanx
«SpueIxen IWIA O1#

«sasn»

>

aspuBIXen

Aoisiy Ay
BujBeuepy :60%

4SpUBIXER

KiojsiH eaipajy sjuaned — (pied Hews) pied yjjesH

SUOTBUIIOBA
Bubeuey coz

] aspugixen
sueiqod yyesy ,‘v :

JUBLIND MAIA ZLH

|
|
|
|
|
|
|
|
U
|
|
|

1. Annex: Use Cases Diagrams

weube|g-gns

1o0Q

sase) as() A10}SIH |e2Ipa W

Figure i. Medical History Use Cases Sub-Diagram

1enss| pien

\\\

O

eje(|euosiad s

10)90(]

uorssiuiad Buipeas sey £|uo s0100Q auy)
«luswaxnbey»

wshed

Juaned — (pJed pews) pied yjjesy

weibeiq-qng
sase) 9s) eje(q |euosliad g

Figure ii. Personal Data Use Cases Sub-Diagram

C: Appointments Use Cases
Sub-Diagram

Q/

Health Card (Smart Card)
- Appointments

#01: Scheduling
appointment

Patient

appointments

External System -
Appointments

#05: Viewing
schedule availability

«uses» «uges»

Figure iii. Appointments Use Cases Sub-Diagram

Doctor

D: System Administration Use Cases
Sub-Diagram

Administrator

Medical Center Database/Server

Updating allergies
/@
Setting medical
center information
anaging doctors

schedules

Figure iv. System Administration Use Cases Sub-Diagram

2. Annex: Use Cases Textual Specification

A: Medical History Use Cases

A01: Viewing Medical History

Name: Viewing Medical History ‘ ID: A01

Main Scenario

This use case initiate after successfully validating the owner’s card and selecting to view the
patient’s medical history. The system will show a summary of the patient’s medical history.
The most recent allergies, vaccinations and health problems will be shown ordered
chronologically. Besides that, the system will show the patient’s chronic conditions. This use
case includes the Viewing Chronic Condition use case. Also the system offers a way to view in
detail the health problems history, the patient’s allergies and vaccinations. Here the user has
the ability to choose one of the options offered by the system. When the user chooses one of
the options, the system expands in the screen the related view.

A02: Viewing Chronic Condition

Name: Viewing Chronic Condition ID: A02

Main Scenario (the user is the doctor)

This use case is included in the Viewing Medical History use case. The user can read what
chronic conditions the patient has (for example, diabetes, pregnancy, osteoporosis, asthma
etc.). The system will show to the user the chronic conditions as a list, in which the chronic
conditions are represented with a designation and the date that the problem was diagnosed.
Also, the system gives the option to manage this list. From this task the user can choose to
manage the user patient chronic conditions.

Alternative Scenario 1 (the user is the patient)
The user can’t manage his chronic conditions. So the system won’t give the option to manage
his chronic conditions.

A03: Managing Chronic Condition

Name: Managing Chronic Condition ‘ ID: AO3

Main Scenario

This use case extends the Viewing Chronic Condition use case. The user selects to manage the
patient’s chronic condition, and then the system gives to the user the ability to manage the
chronic condition information of the patient. From here the user can insert, modify or remove
a patient’s chronic condition data.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
the date and a designation to the chronic condition. The user inserts the data. After that, the
user confirms the insertion. The system stores the insertion into the card with an appointment
identification value associated.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case selects a chronic condition and chooses to modify it. The system
offers a way to change the date and the condition designation. The user makes the changes
and confirms the modification. Then, the system stores the modifications into the card with an
appointment identification value associated.

Alternative Scenario 3 (the user chooses to remove)

The user in this use case selects a chronic condition and chooses to remove it. The system
temporarily removes the chronic condition leaving the ability to the user to recover it until the
he exits the chronic condition management.

Alternative Scenario 3.1 (the user chooses to recover a removed item)

After removing a chronic condition, the user decides to recover it and chooses to recover. The
system changes the item status and won’t remove anymore if the user exits the chronic
condition management.

A04: Viewing Vaccinations

Name: Viewing Vaccinations ID: A04

Main Scenario (the user is the doctor)

This use case extends the Viewing Medical History use case. The user selects to view the
patient’s vaccinations. Then the system shows a list of vaccines administrated to the patient.
That list contains the date of the administration and the vaccine designation, and is ordered
chronologically. Also, the system offers abilities to manage the vaccinations list. The user can
read the patient’s vaccinations history. From this task the user can manage the vaccinations.

Alternative Scenario 1 (the user is the patient)
The user can’t manage his vaccinations list. So the system won’t give the option to manage his
vaccinations list.

A05: Managing Vaccinations

Name: Managing Vaccinations ID: AO5

Main Scenario

This use case extends the Viewing Vaccinations use case. The user selects to manage the
patient’s vaccinations, and then the system gives to the user the ability to manage the
vaccinations information of the patient. From here the user can insert or remove a patient’s
vaccination.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
the date and a designation to the vaccine. The user inserts the data. After that, the user
confirms the insertion. The system stores the insertion into the card with an appointment
identification value associated.

Alternative Scenario 2 (the user chooses to remove)

The user in this use case selects a vaccination and chooses to remove it. The system
temporarily removes the vaccination leaving the ability to the user to recover it until the he
exits the vaccinations management.

Alternative Scenario 2.1 (the user chooses to recover a removed item)

After removing a vaccination, the user decides to recover it and chooses to recover. The
system changes the item status and won’t remove anymore if the user exits the vaccinations
management.

A06: Viewing Allergies

Name: Viewing Allergies ID: AO6

Main Scenario (the user is the doctor)
This use case extends the Viewing Medical History use case. The user selects to view the

10

patient’s allergies. Then the system shows a list of allergies of the patient. That list contains
the date of when the allergy was identified and the allergy designation, and is ordered
chronologically. Also, the system offers abilities to manage the allergies list. The user can read
the patient’s allergies history. From this task the user can manage the allergies.

Alternative Scenario 1 (the user is the patient)
The user can’t manage his allergies list. So the system won’t give the option to manage his
allergies.

A07: Managing Allergies

Name: Managing Allergies ID: A07

Main Scenario

This use case extends the Viewing Allergies use case. The user selects to manage the patient’s
allergies, and then the system gives to the user the ability to manage the allergies information
of the patient. From here the user can insert or remove a patient’s allergy.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
the date and a designation to the allergy. The user inserts the data. After that, the user
confirms the insertion. The system stores the insertion into the card with an appointment
identification value associated.

Alternative Scenario 2 (the user chooses to remove)

The user in this use case selects an allergy and chooses to remove it. The system temporarily
removes the allergy leaving the ability to the user to recover it until the he exits the allergies
management.

Alternative Scenario 2.1 (the user chooses to recover a removed item)

After removing an allergy, the user decides to recover it and chooses to recover. The system
changes the item status and won’t remove anymore if the user exits the allergies
management.

A08: Viewing Family History

Name: Viewing Family History ‘ ID: AO8

Main Scenario (the user is the doctor)

This use case extends the Viewing Medical History use case. The user selects to view the
patient’s family history. Then the system shows the family history of the patient. The family
history is shown as a list that contains in each line the family member degree and this health
problem which could be inherited by the patient. Also, the system offers abilities to manage
the family medical history. The user can read the patient’s family medical history. From this
task the user can manage the family medical history.

Alternative Scenario 1 (the user is the patient)
The user can’t manage his family medical history. So the system won’t give the option to
manage it.

A09: Managing Family History

Name: Managing Family History ID: A09

Main Scenario

11

This use case extends the Viewing Family History use case. The user selects to manage the
patient’s family medical history, and then the system gives to the user the ability to manage
the family history information of the patient. From here the user can insert, modify or remove
an entry about a patient’s family member.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
the family member’s degree and a designation about the health problem. The user inserts the
data. After that, the user confirms the insertion. The system stores the insertion.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case selects a family member health problem and chooses to modify it. The
system offers a way to change family member degree and his health problem. The user makes
the changes and confirms the modification. Then, the system stores the modifications into the
card.

Alternative Scenario 3 (the user chooses to remove)

The user in this use case selects a family member health problem and chooses to remove it.
The system temporarily removes it leaving the ability to the user to recover it until the he exits
the family medical history management.

Alternative Scenario 3.1 (the user chooses to recover a removed item)

After removing a family member entry, the user decides to recover it and chooses to recover.
The system changes the item status and won’t remove anymore if the user exits the family
medical history management.

A10: Viewing Health Problems

Name: Viewing Health Problems ID: A10

Main Scenario (the user is the doctor)

This use case extends the Viewing Medical History use case. The user selects to view the health
problems. Then the system shows the health problems history of the patient. The health
problems history is shown as a list that contains in each line the date of when the problem was
identified, a designation of the health problem and its status. This list is shown ordered
chronologically and by active status. The system offers the ability to manage the health
problems, that is, it gives a way of creating new entries about health problems and to modify
or remove them. From this use case the system allows the user to choose to view the health
problem’s diagnosis and treatment plan written by a doctor.

Alternative Scenario 1 (the user is the patient)

From this task, the user can only see the health problems dates and designations and the
associated treatment plans. The system won’t give to the user the ability of managing the
health problems and the ability to view the diagnosis of each health problem.

A11: Managing Health Problems

Name: Managing Health Problems | ID: A11

Main Scenario

This use case extends the Viewing Health Problems use case. The user selects to manage the
patient’s health problems, and then the system gives to the user the ability to manage the
health problems’ entries. From here the user can insert, modify or remove an entry about a
patient’s health problem.

Alternative Scenario 1 (the user chooses to insert)
The user in this use case chooses to insert, then the system offers a way for the user to insert a
new health problem entry by letting the user to insert the date, the health problem

12

designation, and the status of the health problem. The user inserts the data. After that, the
user confirms the insertion. The system stores the insertion into the card.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case selects a health problem entry and chooses to modify it. The system
offers a way to change the date, the health problem designation and the status. The user
makes the changes and confirms the modification. Then, the system stores the modifications
into the card.

Alternative Scenario 3 (the user chooses to remove)

The user in this use case selects a health problem and chooses to remove it. The system alerts
the user that all the information associated with that health problem will be remove as well.
The patient can confirm. If the patient confirms, the system temporarily removes the entry
leaving the ability to the user to recover it until the he exits the medical history management.
If the user exits the medical history management, the system removes the health problem
entry including the diagnosis and treatment plan associated.

Alternative Scenario 3.1 (the user chooses to recover a removed item)

After removing a health problem entry, the user decides to recover it and chooses to recover.
The system changes the item status and won’t remove anymore if the user exits the medical
history management.

A12: Viewing Current and Past Medication

Name: Viewing Current and Past Medication ID: A12

Main Scenario

This use case extends the Viewing Medical History use case. The user selects to view the
current and past medication of the patient. The system shows two lists, where in each of them
is shown the current and past medication. The system shows the current medication
designations associated with the date of prescription, and in another list below, shows the past
medication in the same way.

Alternative Scenario 1 (the user is the patient)
The system offers a way of requesting prescription renewals of medication. The user can select
what medications he wants to request a prescription renewal.

A13: Viewing Diagnosis Information

Name: Viewing Diagnosis Information ID: A13

Main Scenario (the user is the doctor)

This use case extends the Viewing Health Problems use case. After the user selects the health
problem e chooses to view its diagnosis. The system presents the health problem diagnosis, in
which it shows a short description written by a doctor during an appointment and a list of
measures and test results of the patient. Also the system offers a way of managing the
diagnosis information.

A14: Managing Diagnosis Information

Name: Managing Diagnosis Information ID: A14

Main Scenario

This use case extends the Viewing Diagnosis Information use case. The user selects to manage
the health problem’s diagnosis, and then the system gives to the user the ability to manage the
diagnosis information. From here the user can insert or modify diagnosis information.

13

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert. Then the system offers a way for the user to insert
a short diagnostic description and measurements/test result items in a list. The user inserts the
data. After that, the user confirms the insertion. The system stores the insertion into the card.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case chooses to modify the diagnosis information. The system offers a way
to change the diagnostic description and the measurements/test result items. The user makes
the changes and confirms the modification. Then, the system stores the modifications into the
card.

A15: Viewing Treatment Plan

Name: Viewing Treatment Plan ID: A15

Main Scenario (the user is the doctor)

This use case extends the Viewing Health Problems use case and includes the Viewing Medical
Recommendations use case. After the user selects the health problem e chooses to view its
treatment plan. The system presents the health problem’s treatment plan, in which it shows a
short medical recommendation text written by a doctor at some point of an appointment.
Also, the system offers a way of viewing the medications prescribed by the doctor.

A16: Viewing Medical Recommendations

Name: Viewing Medical Recommendations ID: Al16

Main Scenario (the user is the doctor)
This use case is included in the Viewing Treatment Plan use case. The system shows a short
medical recommendation text and offers to the user the ability of managing it.

Alternative Scenario 1 (the user is the patient)
The system won’t offer the ability of managing the medical recommendation.

A17: Managing Medical Recommendation

Name: Managing Medical Recommendation ID: A17

Main Scenario

This use case extends the Viewing Medical Recommendation use case. The user selects to
manage the medical recommendation, and then the system gives to the user the ability to
manage the recommendation text. From here the user can insert or modify the medical
recommendation text.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert. Then the system offers a way for the user to insert
a short medical recommendation. The user inserts the data. After that, the user confirms the
insertion. The system stores the insertion into the card.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case chooses to modify the medical recommendation text. The system
offers a way to change the recommendation. The user makes the changes and confirms the
modification. Then, the system stores the modifications into the card.

14

A18: Viewing Medical Prescription

Name: Viewing Medical Prescription ID: A18

Main Scenario (the user is the doctor)

This use case extends the Viewing Treatment Plan use case. The user selects to view the
medical prescription. Then, the system shows a list of medications with dosages and periods of
administration associated. The system also shows the date of when the prescription was
passed to the patient. From this use case, the system offers a way to manage the prescription’s
medication.

Alternative Scenario 1 (the user is the patient)
The system won’t offer the ability of managing the medical prescription but offers instead the
possibility of requesting the renewal of the medical prescription.

A19: Requesting Prescriptions Renewal

Name: Requesting Prescriptions Renewal ‘ ID: A19

Main Scenario (the user is the doctor)

This use case can extend the Viewing Medical Prescription or the View Current And Past
Medication use cases. The user chooses to request a medical prescription renewal. Then, the
system shows a list of medications for the user select what medicines he wishes to renew. The
user selects the medicines and sends the request by confirming it. The system sends a note to
the medical staff with the pretended medication to renew and the information of the health
problem associated to that prescription (the health problem status, diagnosis and treatment
plan).

A20: Managing Medicines

Name: Managing Medicines ID: A20

Main Scenario

This use case extends the Viewing Medical Prescription use case. The user selects to manage
the medicines in the medical prescription, and then the system gives to the user the ability to
manage the medicines. From here the user can insert, modify or remove prescription’s
medicines.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert a
new medicine by letting the user to insert the designation, the dosage, and the period of
administration. The user inserts the data. After that, the user confirms the insertion. The
system stores the insertion into the card.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case selects a medicine and chooses to modify it. The system offers a way
to change the designation, the dosage and the period of administration. The user makes the
changes and confirms the modification. Then, the system stores the modifications into the
card.

Alternative Scenario 3 (the user chooses to remove)

The user in this use case selects a medicine and chooses to remove it. The system temporarily
removes the medicine leaving the ability to the user to recover it until the he exits the medical
prescription management. If the user exits the medical prescription management, the system
removes the temporarily removed medicines from the card.

Alternative Scenario 3.1 (the user chooses to recover a removed item)
After removing a medicine from the prescription list, the user decides to recover it and

15

chooses to recover. The system changes the item status and won’t remove anymore if the user
exits the medical prescription management.

B: Personal Data Use Cases

B01: Viewing Personal Data

Name: Viewing Personal Data ‘ ID: BO1

Main Scenario (the user is the patient)

This use case initiate after successfully validating the owner’s card and selecting to view the
patient’s personal data. The system will show the personal data details of the patient. The
patient’s name, gender, age, blood type, etc, are shown in the personal data view. The system
offers the ability of managing those personal details.

B04: Managing Optional Details

Name: Managing Optional Details ID: BO4

Main Scenario

This use case extends the Viewing Personal Data use case. The user selects to manage the
personal data details, and then the system gives to the user the ability to manage it. From here
the user can insert or modify non-obligatory personal details.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
personal details that haven’t yet been inserted. The user inserts the details that he wants to
insert and then confirms the insertion. Then, the system stores the insertions into the card.

Alternative Scenario 2 (the user chooses to modify)

The user in this use case chooses to modify some personal details. The system offers a way to
change the non-obligatory details. The user makes the changes and confirms the modification.
Then, the system stores the modifications into the card.

B05: Managing Required Details

Name: Managing Required Details ‘ ID: BO5

Main Scenario (the user is the card issuer)

The user selects to manage the required (obligatory) personal data details, and then the
system gives to the user the ability to manage it. From here the user can insert or modify the
personal obligatory details. This use case is made when creating the patient’s card by the card
issuer.

Alternative Scenario 1 (the user chooses to insert)

The user in this use case chooses to insert, then the system offers a way for the user to insert
personal obligatory details. The user inserts the details and then confirms the insertion. Then,
the system stores the insertions into the card.

Alternative Scenario 2 (the user chooses to modify)

The user made an error when inserting and in this use case chooses to modify some personal
details. The system offers a way to change the obligatory details. The user makes the changes
and confirms the modification. Then, the system stores the modifications into the card.

16

C: Appointments Use Cases

C01: Scheduling Appointment

Name: Scheduling Appointment ID: CcO01

Main Scenario

This use case includes the Viewing Schedules Availability use case from the external system.
This use case initiate after successfully validating the owner’s card and selecting to schedule an
appointment. The system then offers three ways of scheduling an appointment, by searching a
doctor, by searching a date or scheduling by type of appointment. When the user chooses one
of the previous options the system obtains and shows the availability of schedules.

C02: Viewing Appointments

Name: Viewing Appointments ‘ ID: C02

Main Scenario

This use case initiate after successfully validating the owner’s card and selecting to view the
scheduled appointments. The system then shows in the screen the list of scheduled
appointments. In each entry of the list the system describes the date and hour, the medical
center name, and optionally the name of the doctor and the type of appointment. Also the
system offers ways of managing the scheduled appointments. The user can choose to manage
schedule entries by selecting an entry and choosing what to do.

C03: Managing Appointments

Name: Managing Appointments ID: C03

Main Scenario

This use case extends the Viewing Appointments use case. In this use case the user chooses to
manage an appointment after selecting it. Then, the system offers ways of modifying and
canceling the selected appointment. The user chooses one of the options.

Alternative Scenario 1 (the user chooses to modify)

The user chooses to modify the scheduled appointment after selecting the schedule entry. The
system then offers a way of modifying the date and the doctor or type of appointment by
showing to the user the available schedules. The user then chooses the pretended date, doctor
or appointment type and confirms. The system stores the changes into the card.

Alternative Scenario 2 (the user chooses to cancel)

The user chooses to cancel a scheduled appointment after selecting the schedule entry. The
system then asks for the confirmation. The user confirms it and then the system removes the
scheduled appointment.

17

C04: Checking-in

Name: Checking-in ID: C04

Main Scenario

This use case initiate after successfully validating the owner’s card and selecting to check-in.
The system shows to the user the appointment scheduled in the card within a certain time and
offers a way of confirming the check-in. The user confirms the check in and then the system
sends a notice to the doctor’s computer that the patient has checked-in.

C05: Viewing Schedule Availability

Name: Viewing Schedule Availability ‘ ID: CO5

Main Scenario

This use case is included in the Scheduling Appointment use case and includes either the
Searching by Doctor or Searching by Date use cases. The user chooses to view the available
schedules and then the system offers a way of scheduling by type of appointment and
searching by doctor or by Date. The user chooses one of the options and then the system
shows to the user the available schedule. The user then chooses the schedule date in the
available schedule presented. The system shows the summary of the schedule done and asks
for the user confirmation. The user confirms it and the system stores the scheduled
appointment into the card.

C06: Searching by Doctor

Name: Searching by Doctor ID: CO6

Main Scenario

This use case is included in the Viewing Schedule Availability use case. The user chooses to
search available schedules by doctor. The system offers a way of inserting the doctor’s name
or browsing through resident doctors. The user chooses the doctor by inputting his name.
Then, the system shows the available schedule for that doctor.

C07: Searching by Date

Name: Searching by Date ‘ ID: c07

Main Scenario

This use case is included in the Viewing Schedule Availability use case. The user chooses to
search available schedules by date. The system offers a way of inserting the date. The user
chooses the day and month. Then, the system shows the available schedule for that date.

18

3. Annex: Informal Functional Requirements

In this section we describe the functional requirements of our system. They were

gathered from discussions with stakeholders and from reading documents about medical

appointments.

3.1. In-Card Requirements (server applications)

General

FR1.

The card must have information about the patient’s personal data, his medical
history, and appointment schedule.

FR2. The patient’s medical history must be editable by the medical staff, and only
by the medical staff.

FR3. The patient’s medical history must include entries of diagnostics and
associated treatments of health problems made in appointments, as well as a
list of administrated vaccines and the patient’s allergies.

FR4. The medical history is composed of appointments (including diagnostics,
treatments and medications), allergies, vaccinations and chronic conditions.

FR5. The system must represent on the card all dates with the following format:
mm/dd/yyyy, where month and day are composed of two digits and year is
represented by four digits.

FR6. The system must respect the number of days of February according to the leap
years when dealing with dates.

FR7. The system must respect the number of days of the respective months.

FR8. Itis only possible to have dates of the years starting with 18xx, 19xx and 20xx.

FR9. The system must represent on the card the time (hour) with the following
format: hh:mm, where hour and minutes are represented by two digits each,
and where the hour has a value from 0 to 23.

FR10. The information related to a date or hour, must be stored in the card in the
form of hexadecimal values of the decimal values, and not in hexadecimal
values of characters.

Security

FR11. For security reasons, the card must have an owner Pin-code.

FR12. The card must have a card issuer/provider Pin-code.

FR13. Whenever the card is inserted into a machine, the card pin-code must be
asked.

FR14. It must be possible for a card owner to change his pin-code.

FR15. The card pin-code must have a maximum of 4 digits.

FR16. The card must allow 3 attempts to insert the right pin-code in maximum.

FR17. The card must be blocked to the user if he fails the 3 pin validating attempts.

FR18. The card must allow the card issuer to unlock a blocked card.

19

Personal Data

FR19.

FR20.

FR21.

FR22.

FR23.

FR24.

FR25.

FR26.

FR27.

FR28.

FR29.

FR30.

FR31.

FR32.

FR33.

FR34.

FR35.

FR36.
FR37.

The patient’s personal data must be divided in required data and optional
personal data.

The required personal data must contain the patient’s name, gender, birth
date, blood type, ID number or passport ID, his birthplace and nationality.

The optional personal data includes a personal phone contact, a patient’s
relative phone contact, an address (including the city, country and zip code), a
social security number, and a preferred language.

The optional personal data must be editable by the patient.

The required personal data must be only modifiable only by administrator.

The system must not permit to enter values of a patient’s name, passport ID,
ID number, phone contacts, address, city, zip code and social security with a
length no longer than the respective stipulated limit.

The system must represent the address country, nationality and birth place as
a country code.

The system must not permit to enter values of country code and preferred
language with a length no longer or lesser than the respective stipulated limit.
The only possible values for the patient’'s gender are male, female, and
undefined.

By default, the patient’s gender is initialized with the value undefined, until the
card issuer inserts the patient’s information.

The only possible values for the patient’s blood type are A+, A-, B+, B-, AB+,
AB-, O+ and O-. That makes eight possible values, plus one for initialization, for
representing the blood type.

The system must represent the values of blood types as numbers from zero to
eight, where zero represents the initialization value of a blood type until the
card issuer inserts the patient’s information, and each value from 1 (one) to 8
(eight) represents respectively the values A+, A-, B+, B-, AB+, AB-, O+ and O-.
The information related to personal data, must be stored in the card in the
form of hexadecimal values of the characters of its textual descriptions (i.e.
strings). Excepts the birth date, gender and blood type.

The card owner’s name, and city (from address) must only contain letters
(upper and lower case) and special characters like spaces or letter accents.

The card owner’s birth date must have the same format as all other dates in
the system.

The card owner’s birth place, nationality, country (from address) and preferred
language must be represented by a code in the card and must only contain
letters (upper and lower case).

The card owner’s id number and passport id must only contain letters (upper
and lower case) and number digits (0 to 9). No special characters.

The card owner’s address and zip code can contain any characters.

The card owner’s phone contact, relative phone contact and social security
number must only contain number digits (0 to 9).

20

Allergies

FR38. The system must specify an allergy reference code to the designation and type
of allergy and its date of identification.

FR39. Each patient allergy must be associated with a designation, a type of allergy
and a date.

FR40. The date associated with an allergy must be the date of the allergy
identification.

FR41. When adding an allergy information it is required to specify an allergy
reference code to the designation and type of allergy and its date of
identification.

FR42. The user can remove any allergy that is in the card.

FR43. if the limit of possible allergies insertions is achieved, the system must not
allow insertions of allergies into the card.

FR44. Patient’s allergy designations and types that are known and exists on the
external system database must be represented by reference codes in the card.

FR45. The designation and type of allergies must be represented by a reference code
in the card, and its format must only contain letters (upper and lower case)
and numbers digits (0 to 9), so no special characters are allowed and not
spaces too.

FR46. The given allergy reference code must have exactly the stipulated length.

FR47. The allergies designation must be stored in the card in the form of hexadecimal
values of the characters of its textual descriptions (i.e. strings).

FR48. The allergies identification date must have the same format as all other dates
in the system.

FR49. The system can only allow a member of the medical staff to insert or remove a
patient’s allergy in the card.

FR50. There must not exist duplicated entries of an allergy with the same allergy
reference code.

Vaccines

FR51. The system must represent vaccine information by specifying its designation
and its date of administration.

FR52. The system must allow inserting data related to the patient’s vaccination
history.

FR53. The system must only allow a medical staff to insert or remove a vaccine from
the vaccination list.

FR54. When adding vaccine information it is required to specify its designation and
its date of administration.

FR55. The designation of a vaccine must be represented by a reference code in the
card, and its format must only contain letters (upper and lower case) and
numbers digits (0 to 9), so no special characters are allowed and not spaces
too.

FR56. The system must permit the insertion of a designation or administration date

value of a vaccine that has a length with the same stipulated limit.

21

FR57.

FR58.

FR59.
FR60.

FR61.

The information related to vaccines, except the administration date, must be
stored in the card in the form of hexadecimal values of the characters of its
textual descriptions (i.e. strings).

The vaccines administration date must have the same format as all other dates
in the system.

The user can’t remove any vaccine that isn’t in the card.

The system must not allow the insertion into the card anymore vaccines
information if the limit of possible vaccines insertions is achieved.

The system must store the date with its decimal values converted to
hexadecimals.

Diagnostics (dependent to Appointments)

FR62.

FR63.
FR64.

FR65.

FR66.

FR67.

FR68.
FR69.

FR70.

FR71.
FR72.

FR73.

The system must allow to represent a short description made by the doctor
during an appointment and has a title to inform about its contents.

Each diagnostic must be related to only one appointment.

When adding a diagnostic it is required a short description made by the doctor
during an appointment and has a title to inform about its contents.

The system must not permit to add a diagnostic to an appointment if it has a
schedule status.

The information related to diagnostics, namely, short description and title,
must be stored in the card in the form of hexadecimal values of the characters
of its textual descriptions (i.e. strings).

The diagnostic’s short descriptions and titles may contain letters (upper and
lower case), number digits (0 to 9) and special characters.

Several diagnostics can be associated with an appointment.

There can’t be any data(treatments or medicines) related to an appointment if
there’s no diagnostic made.

The system must delete from the card any appointment where no diagnostics
were made, after 24 hours of the schedule time .

The system must allow a doctor to modify a diagnostic during an appointment.
If a diagnostic is deleted from the card, all treatments and medicines
associated with it must be deleted as well.

When trying to delete a diagnostic the system must warn about its
dependencies if any.

Treatments (dependent to Appointments)

FR74.

FR75.

FR76.

FR77.

FR78.

The system must allow to represent health problems by a designation and
associated with the treatment prescribed during an appointment.

Medical treatments must be associated with diagnostics made during an
appointment.

To insert a treatment there must be a diagnostic associated.

A medical plan (treatment) must be associated with a medical appointment
and can contain medication prescribed by a doctor, medical recommendations
and the health problem associated.

When adding a treatment it is required to have a medical recommendations
and the health problem associated.

22

FR79.

FR80.

FR81.

FR82.

The information related to treatments, namely, medical recommendations and
health problem must be stored in the card in the form of hexadecimal values
of the characters of its textual descriptions (i.e. strings).

The treatments’ medical recommendations and health problem associated
may contain letters (upper and lower case), number digits (0 to 9) and special
characters.

The system must relate one treatment per health problem, so an appointment
may have more than one treatment associated, because it is possible to have
more than one health problem identified in one appointment.

The system must allow having several treatments associated with a diagnostic.

Medicines (dependent to Treatments)

FR83.

FR84.
FR85.

FR86.

FR87.

FR88.

FR89.

FR90.

FRO1.
FR92.

FRO3.

The data related to medication prescribed by a doctor are the designation of
the medicine, the period of administration (period of time in days that the
patient should take the medicine), the administration description (how the
medicine should be administrated, i.e. dosages and frequencies) and the date
of the prescribed medication.

To insert a Medicine there must be a treatment associated.

When adding a Medicine it is required to have a designation of the medicine,
the period of administration (period of time in days that the patient should
take the medicine), the administration description (how the medicine should
be administrated, i.e. dosages and frequencies) and the date of the prescribed
medication.

The information related to medications, namely, designation of the medicine
administration description, must be stored in the card in the form of
hexadecimal values of the characters of its textual descriptions (i.e. strings).
The information about the period of administration must be stored as a
number that represents the number of days.

The designation of a medicine must be represented by a reference code in the
card, and its format must only contain letters (upper and lower case) and
numbers digits (0 to 9), so no special characters are allowed and not spaces
too.

The given medicines designation reference codes must have exactly the
stipulated length.

The medicines’ administration description may contain letters (upper and
lower case), number digits (0 to 9) and special characters including spaces.

The medicine date must have the same format as all other dates in the system.
The prescription date of a medicine must be the same as the respective
appointment’s date or a later date.

The prescription date of a medicine must be bigger than or equal to the date of
the appointment in which the medicine was prescribed.

Chronic Conditions

FRO94.

The system must specify a chronic condition reference code to the designation
of chronic conditions and its date of identification.

23

FR95. Each patient chronic condition must be associated with a designation and a
date.

FR96. The date associated with a chronic condition must be the date of the chronic
condition identification.

FR97. When adding an chronic condition information it is required to specify an
chronic condition reference code to the designation and its date of
identification.

FR98. The user can only remove a chronic condition that is in the card.

FR99. If the limit of possible chronic condition insertions is achieved, the system
must not allow insertions of chronic condition into the card.

FR100. Patient’s chronic condition designation are known and exists on the external
system database must be represented by reference codes in the card.

FR101. The designation of chronic condition must be represented by a reference code
in the card, and its format must only contain letters (upper and lower case)
and numbers digits (0 to 9), so no special characters are allowed and not
spaces too.

FR102. The given chronic condition reference code must have exactly the stipulated
length.

FR103. The chronic condition designation must be stored in the card in the form of
hexadecimal values of the characters of its textual descriptions (i.e. strings).

FR104. The chronic condition identification date must have the same format as all
other dates in the system.

FR105. The system can only allow a member of the medical staff to insert or remove a
patient’s chronic condition in the card.

FR106. There must not exist duplicated entries of a chronic condition with the same
allergy reference code.

Appointments

Scheduling

FR107. It must be possible to schedule appointments.
FR108. A scheduled appointment must contain data of a place (local), a date/time

and a doctor or an appointment type.

FR109. When adding a new scheduled appointment information it is required to

specify its date, hour, local and also the doctor or the type of appointment.

FR110. If the limit of possible appointment insertions is achieved, the system must

not allow insertions of appointments into the card.

FR111. The system must represent a doctor by a reference code associated with

the local of practicing (hospital, clinic, etc.).

FR112. The doctor of an appointment must be represented by a reference code in

the card, and its format must only contain letters (upper and lower case)
and numbers digits (0 to 9), so no special characters are allowed and not
spaces too.

FR113. The given doctor reference code must have exactly the stipulated length.

24

3.2.

FR131.

FR132.

FR114.

FR115.

FR116.

FR117.

FR118.

FR119.

FR120.

FR121.

FR122.

FR123.
FR124.

The doctor must be stored in the card in the form of hexadecimal values of
the characters of its textual descriptions (i.e. strings).

The data about the place of the appointment must contain the name of the
medical center, the name of the city and a reference code of the country.
The system must represent the local as a code where the first two digits
represent the country, the three next digits represents the city, and the last
three digits represents the place (medical center, hospital, etc). In total the
system must represent the local as an 8 digits code.

Data about the appointment’s date must include the date (year, month and
day) and hour.

The appointment date must have the same format as all other dates in the
system.

The appointment hour must have the same format as all other hours in the
system.

The given appointment type reference code must be within the stipulated
range.

It must be possible to modify a scheduled appointment.

The system must not allow modifying the data (i.e. date and time, local,
doctor, type of appointment) of an appointment after checking in to that
appointment.

It must be possible to cancel a scheduled appointment.

It must not be possible to overlap schedules in the same date and hour.

Checking-in

FR125.

FR126.

FR127.

When a check-in of an appointment is made, that scheduled appointment
must be turned into a checked-in appointment.

When a check-in of a scheduled appointment is not made in a period of 1
day, that scheduled appointment must be erased from the card.

If an appointment check-in was made, but there is no related data entries in
a period of 1 day, that appointment should be erased from the card.

Effective Appointments

FR128.

FR129.

FR130.

To an effective appointment there must be related diagnostic inserted by
the appointment doctor.

An appointment has an effective status when it has medical information
associated.

An appointment cannot be deleted from the card if its status is effective.

Off-Card Requirements (client applications)

When trying to schedule an appointment by date and hour, the available

doctors should be showed.
When trying to schedule an appointment by a doctor, the available date and
hour should be showed.

25

FR133.
FR134.

FR135.

FR136.

FR137.
FR138.

FR139.

FR140.
FR141.

FR142.

FR143.

FR144.

FR145.

FR146.
FR147.

FR148.

3.3.

FR149.

FR150.

FR151.

To a doctor it must be associated his name and his specialty.

When scheduling an appointment the user only have to indicate a date/hour
and a doctor or type of appointment.

The system must have the responsibility of storing the data about the place in
the card when the patient is scheduling an appointment.

It must be possible to medical staff to visualize and authorize requests of
medical prescriptions renewals.

The idiom of the card owner must be recognized.

There must be a way of giving to the patient the ability of turning confidential
some personal data.

There must be a way of giving to the patient the ability of requesting the
renewal of medical prescription using the card.

It must be possible to make an appointment check-in using the card.

The check-in must be done before the appointment scheduled time or until the
previous patient is called.

If a patient is making a check-in out of time the system must alert him and let
him schedule another appointment.

The system must have a list of all allergies identified by medicine.

The card owner only can see from his medical history the designations of his
health problems, prescriptions, vaccinations and allergies. He must not see the
general descriptions made by the doctors during the appointment.

The medical staff can only access the patient’s personal data that hasn’t a
confidential state.

The system must permit the insertion of allergy designations.

The system must permit the insertion of doctors and their availability
schedules for appointments.

The system must permit the configuration of data related to the medical
center such its name, place and country.

General System Requirements

Doctors that will use the system to insert data on the patient’s card must have
a registry on the central system database, so he can be represented by a
reference code when entries on the card make a reference to him.

Hospitals, Medical Centers and other facilities using the system must register
themselves in the central system database, so they can be represented by a
reference code when entries on the card make a reference about them.

Allergy designations, types of allergies, vaccine designations and medicine
designations represented on the patient’s card by reference codes must exist
in the central system database, and must be synchronized with all systems
implemented on other medical facilities.

26

4. Annex: Semi-Formal Requirements

From the informal functional requirements, the semi-formal requirements (SFR) were

obtained.

Personal Data (Semi-Formal Requirements)

ID

From
Requirements

Semi-Formal Requirements

SFR24

FR24

If passing a value of a patient’s name, passport ID, ID number,
phone contact, address, city, zip code or social security and its
value has a length longer than the stipulated; then the system
must do no changes.

SF26

FR26

If passing a value of a country code or preferred language and its
value has a length different from the stipulated limit; then the
system must do no changes.

SFR31

FR31

If passing a value of an attribute, that is not a birth date, gender
or blood type, then these data are stored in the form of
hexadecimal values of the characters of its textual descriptions.

SFR32

FR32

If passing a value of a patient’s name or city, then they must
contain only letters (upper and lower case) and special characters
like spaces and accents.

SFR34

FR34

If passing a value of a birth place, nationality, country (from
address) or preferred language, then they must be a code
containing only letters (upper and lower case).

SFR35

FR35

If passing a value of ID number or passport ID, then they must
contain only letters (upper and lower case) and numbers digits (0
to9).

SFR37

FR37

If passing a value of a phone contact, relative contact or a social
security number, then they must contain only numbers digits (0
to9).

Allergies (Semi-Formal Requirements)

ID F‘rom Semi-Formal Requirements
Requirements

SFR41 FR41 If adding a new allergy, then is necessary to insert the allergy
reference code and the date of identification.

SFR42 FR42 If removing an allergy and there isn’t any allergy, then the system
must do no changes.

SFR43 FR43 If adding an allergy and the limit has been achieved, then the
system must do no changes.

SFR45 FR45 If passing a value of an allergy reference code, then the value of
the reference code must only contain letters (upper and lower
case) and number digits (0 to 9) and no special characters and
spaces are allowed.

SFR46 FR46 If passing a value of an allergy reference code, then its length
must be exactly the stipulated length.

SFR47 FR47 If passing an allergy reference code, then the reference code
must contain only letters and numbers and not spaces or other

27

special characters and the system must store them as
hexadecimal values of the reference code characters.

SFR50

FR50

If passing an allergy reference code, then it should not exists
another stored allergy with the same reference code.

Vaccines (Semi-Formal Requirements)

ID F_rom Semi-Formal Requirements
Requirements

SFR54 FR54 If adding a new vaccine, then it is required to insert its
designation and its date of vaccine administration.

SFR55 FR55 If passing a value of vaccine designation code, then the
value of the reference code must only contain letters (upper
and lower case) and number digits (0 to 9) and no special
characters and spaces are allowed.

SFR56 FR56 If passing a value of vaccine designation code or a value of a date,
then its length must be exactly the stipulated length.

SFR57 FR57 If passing a value of vaccine designation code, then the system
must store it as hexadecimal values of the characters.

SFR59 FR59 If removing a vaccine and there isn’t any vaccine information,
then the system must do no changes.

SFR60 FR60 If adding a vaccine and the limit has been achieved, then the
system must do no changes.

SFR61 FR61 If passing a value of vaccine administration date, then the system

must store its decimal values as hexadecimals.

Diagnostics (Semi-Formal Requirements)

ID F'rom Semi-Formal Requirements
Requirements

SFR64 FR64 If adding a new diagnostic, then it is required to insert its
description and its title.

SFR65 FR65 If adding a diagnostic and it has an appointment with
schedule status; then the system must do no changes.

SFR66 FR66 If passing a value of diagnostic’s description or title, then the
system must store it as hexadecimal values of the characters.

SFR67 FR67 If passing a value of diagnostic’s description or title, then

the value the values can contain letters (upper and lower
case), number digits (0 to 9) and special characters.

Treatments (Semi-Formal Requirements)

ID F_rom Semi-Formal Requirements
Requirements
SFR78 FR78 If adding a new treatment, then it is required to insert its medical
recommendations and its health.
SFR79 FR79 If passing a value of treatment’s medical recommendation or

health problem, then the system must store it as hexadecimal
values of the characters.

28

SFR80

FR80

If passing a value of treatment’s medical recommendation
or health problem, then the value the values can contain
letters (upper and lower case), number digits (0 to 9) and
special characters.

Medicines (Semi-Formal Requirements)

ID From Semi-Formal Requirements
Requirement

SFR85 FR85 If adding a new medicine, then is necessary to insert a medicine
reference code, the period of administration, the administration
description and the date of the prescribed medication.

SFR86 FR86 If passing a value of medicine’s designation or administration
description, then the system must store it as hexadecimal values
of the characters.

SFR87 FR87 If passing a value of period of administration, then the system
must store it as a number.

SFR88 FR88 If passing a value of a medicine’s designation, then the value of
the reference code must only contain letters (upper and lower
case) and number digits (0 to 9) and no special characters and
spaces are allowed.

SFR89 FR89 If passing a value of a medicine’s designation, then its length must
be exactly the stipulated length.

SFR90 FR90 If passing a value of medicine’s description, then the value

the values can contain letters (upper and lower case),
number digits (0 to 9) and special characters.

Chronic Conditions (Semi-Formal Requirements)

ID F_rom Semi-Formal Requirements
Requirements

SFR97 FR97 If adding a new chronic condition, then is necessary to insert the
chronic condition reference code and the date of identification.

SFR98 FR98 If removing a chronic condition and there isn’t any chronic
condition, then the system must do no changes.

SFR99 FR99 If adding a chronic condition and the limit has been achieved,
then the system must do no changes.

SFR101 FR101 If passing a value of a chronic condition reference code, then the
value of the reference code must only contain letters (upper and
lower case) and number digits (0 to 9) and no special characters
and spaces are allowed.

SFR102 FR102 If passing a value of a chronic condition reference code, then its
length must be exactly the stipulated length.

SFR103 FR103 If passing a chronic condition reference code, then the reference
code must contain only letters and numbers and not spaces or
other special characters and the system must store them as
hexadecimal values of the reference code characters.

SFR106 FR106 If passing a chronic condition reference code, then it should not

exists another stored chronic condition with the same reference
code.

29

Appointments (Semi-Formal Requirements)

ID F_rom Semi-Formal Requirements
Requirements

SFR109 FR109 If adding a new scheduled appointment, then it must be inserted
a date, an hour, a place and doctor or a type of appointment.

SFR110 FR110 If adding a new scheduled appointment and the limit has been
achieved, then the system must do no changes.

SFR112 FR112; FR114 | If passing a value of a doctor reference code, then the value of
the reference code must only contain letters (upper and lower
case) and number digits (O to 9) and no special characters and
spaces are allowed and the system must store them as
hexadecimal values of the reference code characters.

SFR113 FR113 If passing a value of a date, hour, local or doctor, then its length
must be exactly the stipulated length.

SFR120 FR120 If passing a value of an appointment type, then its value must be
between zero and the stipulated range.

SFR122 FR122 If an appointment is already checked-in, then the appointment
header cannot be modified (date and time, local, doctor, type of
appointment).

SFR125 FR125 If an appointment is checked-in, then that appointment must turn
into a checked-in state.

SFR130 FR130 If removing an appointment and its status is effective, then the

system must do no changes.

5. Annex: Class Invariants

General/Common (Class Invariants)

ID F'rom Class Invariants
Requirements

CI5 FR108 Common.date must be array byte of length equal to 4 and
Common.date[0] is month, Common.date[l] is day and
(Common.date[2], Common.date[3]) is year.

Cle FR6; FR10 If isLeapYear(year) then if month equal to February (i.e., 0x02), then day
less than 29 (0x1D) and more than 0 (0x00).

Else, day less than 28 (0x1C) and more than 0 (0x00).

Cl7 FR7; FR10 For all possible instances of month except month equal to February (i.e.,
0x02), there is a respective day less than 30 (Ox1E) or 31 (Ox1F).

Cl8 FRS8; FR10 For all possible instances of year, such that Common.date[2] equals to
18 (0x12) or 19 (0x13) or 20 (0x14) and Common.date[3] more or equal
to 0 (0x00) and less or equal to 99 (0x63).

(@[] FR9 Common.hour must be array byte of length equal to 2 and
Common.hour[0] is hour, Common.date[1] is minutes.

cl10 FR9; FR10 For all possible instances of Common.hour, such that hour more than or

equal to 0 (0x00) and hour less than or equal to 23 (0x17) and minutes
more than or equal to 0 (0x00) and minutes less than or equal to 59
(0x3B) and minutes.

30

Personal Data (Class Invariants)

ID F.rom Class Invariants
Requirements

CI20 FR20 For all object p of type personal, such that name(p) not equal to null,
gender(p) not equal to null, birthdate(p) not equal to null, bloodtype(p)
not equal to null, id(p) or passport(p) not equal to null, birthplace(p) not
equal to null, nationality(p) not equal to null

Cl21 FR21 For all object p of type personal, such that phone(p) is nullable,
relativephone(p) is nullable, address_city(p) is nullable,
address_country(p) is nullable, address_zipcode(p) is nullable,
socialsecurity(p) is nullable and language(p) is nullable

Cl25 FR25 For all object p of type personal, such that address_country(p) and
nationality(p) and birthplace(p) is country_code

Ci27 FR27 For all object p of type personal, such that gender(p) equal to Undefined
(0x00) or gender(p) equal to Male (0x01) or gender(p) equal to Female
(0x02)

Ci28 FR28 For all new object p of type personal, such that gender(p) equal to
Undefined (0x00)

CI29 FR29; FR30 For all object p of type personal, such that bloodtype(p) maximum is
value 8 and bloodtype(p) equal to (Undefined (0x00) or A+ (0x01) or A-
(0x02) or B+ (0x03) or B- (0x04) or AB+ (0x05) or AB- (0x06) or O+ (0x07)
or O- (0x08))

Ci33 FR33 For all object p of type personal, such that birthdate(p) is Common.date

Allergies (Class Invariants)

ID F.rom Class Invariants
Requirements
CI38 FR38 For all object a of type allergy, such that designation(a) not equal to
null, type(a) not equal to null, identification_date (a) not equal to null
Cl48 FR48 For all object a of type allergy, such that identification_date(p) is

Common.date

Vaccines (Class Invariants)

ID F.rom Class Invariants
Requirements
Ci51 FR51 For all object v of type vaccine, such that designation(v) not equal to
null, administration_date (v) not equal to null
CI58 FR58 For all object v of type vaccine, such that administration_date(v) is

Common.date

Diagnostics (Class Invariants)

ID F.rom Class Invariants
Requirements
Cle2 FR62 For all object d of type diagnostic, such that title(d) not equal to null,
description(d) not equal to null
Cle3 FR63 For all object d of type diagnostic, Exists object a of type appointment,

such that appointmentlID(d) equals to appointmentID(a)

31

Treatments (Class Invariants)

From .
ID] Class Invariants
Requirements
Cl74 FR74 For all object t of type treatment, such that health_problem (t) not

equal to null, recommendation(t) not equal to null

Medicines (Class Invariants)

ID F.rom Class Invariants
Requirements
CI83 FR83 For all object m of type medicine, such that designation(m) not equal to
null, administration_period(m) not equal to null,
administration_description(t) not equal to null, prescription_date(t) not
equal to null
FR92; FR92 For all object m of type medicine, such that date(m) is Common.date

Chronic Conditions (Class Invariants)

ID F-rom Class Invariants
Requirements
Clo4 FR94 For all object cc of type chronic_condition, such that designation(cc) not
equal to null, identification_date (cc) not equal to null
Cl104 FR104 For all object cc of type chronic_condition, such that

identification_date(cc) is Common.date

Appointments (Class Invariants)

ID F‘rom Class Invariants
Requirements

Cl108 FR108 For all object a of type appointment, such that local(a) not equal to null,
date(a) not equal to null, hour(a) not equal to null and (doctor (a) not
equal to null or type(a) not equal to null).

Cll116 FR116 For all objects a of type appointment, such that local(a) must be array
byte of length equal to 8 and (local(a)[0], local(a)[1]) equal to
country_code, (local(a)[2], local(a)[3], local(a)[4]) equal to city_code and
(local(a)[5], local(a)[6], local(a)[7]) equal to place_code.

Cl117 FR117; FR118; | For all object a of type personal, such that date(a) is Common.date and

FR119 hour(a) is Common.hour

Cl124 FR124 For all objects a1 and a2 of type appointment, if al not equal to a2 then
(date(al) not equal to date(a2) and hour(al) not equal to hour(a2)).

Cl126 FR126 For all objects a of type appointment, such that if status(a) less than

CHECK_IN then timeDifference(schedule_time(a), actual_time) must be
less than 24 hours.

32

6.

Annex: System Invariants

ID F_rom System Invariants
Requirements
S169 FR69; FR72; For all object t of type treatment, Exists object d of type diagnostic, such
FR75; FR76 that diagnosticlD(t) equals to diagnosticID(d)

SI169b FR69; FR72 For all object m of type medicine, Exists object d of type diagnostic, such
that diagnosticlD(m) equals to diagnosticlD(d)

S184 FR84 For all object m of type medicine, Exists object t of type treatment, such
that treatmentID(m) equals to treatmentID(t)

S193 FR93 For all object m of type medicine and For all object a of type
appointment such that appointmentID(m) equals to appointmentliD(a)
and date(m) is bigger than or equal to date(a).

SI126 FR127; FR72

For all objects a of type appointment, such that If status(a) more or
equal to CHECK_IN and timeDifference(schedule_time(a), actual_time)

more than 24 hours then exists object d of type diagnostic, such that
appointmentID(d) equals to appointmentID(a).

7. Annex: Class Diagrams

Elcardservices_Impl <<interface>>
Attributes [© cardservices

private Appointments appointments Attributes
private Diagnostics diagnostics
private Treatments treatments
private Medicines medicines
private Personal personal
private Allzrgies allergies
private SecuritySenice security
private Vaceines vaccines

Operations

public Appointments getAppointments()
public Diagnostics getDiagnastics{)
public Treatments getTreatments()
public Medicines geiMedicines)

public Allergies getAllergies()

public Personal getPersonal()
, X (O ETIE X N public Vaccines getVaccines()
7 | public CardSenices_Impl(SecuritySenice security) ~
~
e Operations Redefined From CardServices N
/’ public Appaintments getAppointments() N
// public Diagnostics getDiagnostics() AN
/ public Treatments getTreatments() N AN
/ R ~ ~
i public Medicines getMedicines() ~ ~
; ~ ~
’ public Personal getPersonal() ‘\\ o
/ public Allergies getAllergies() So \\
,/ public Vaccines getvaccines() \\\ .
/ - - ~ So
s e / AN AN N ~
/ - / N ~ ~ ~
- ~ ~ N
. -7 / » T~a S ~
¥ Vs 4 AN s AN
]] 1 1]] ol
Personal Allergies i i D i Treatments Medicines
~ 1 P -
N A \ / P -7
~. N \ ’ R o
~ ~ | / P PR
N ~ / 7, -
~ ~ \ / T, -
~ ~ \ 27, e
~a ~ \ !/ P -
~ ~ ’ - I -
~a N \ / - -~ -7
~. N \ / e e -
~o . \ / e . e
SN \ s e -7
~ A -
3_“\ \ Ve s 7
e e
w7
m -
- g
&

igure v. CardServices module Class Diagram

33

le c E carautil
Attributes Attributes
public short DATE_LENGTH =4
COperations
public short HOUR_LENGHT =32 public byte[0..*] clone(byte bytes[0.."])
public short DOCTOR_CODE_LENGTH=5

public short LOCAL _CODE_LENGTH =8
public short MAX_BUFFER_BYTES = 60

public short countMotMullObjects{ Chject array[0..*])

public boolean validateCbjectArrayPosition{ Object array[*], short position)
public void arrayCopy(byte from[0..*], byte to[0..*])

Cperations public void cleanField(byte field[0..*])

Figure vi. Common module Class Diagram

<<interfaces=
to Anergiessetup
Aftributes
public short MAX_ALLERGY_ITEMS = 50
public short ALLERGY CODE_LENGTH =4

Operations
<<interface>:» <<interface>>
1o Allergies [Altergy
Attributes Attributes
Operations Operations
public void addAllergy(byte designation[0..*], byte date[0..*]) public veid setDesignation(byte designation[0..”])
public void removeAllergy(short position) public byte[0..*] getDesignation{)
public short countAllergies() public void setidentificationDate(byte date[0..*])
public void setAllergyDesignation| short position, byte designation|™]) public byte[0..*] getidentficationDate()
public byte[0..*] getAllergyDesignation(short position) Y
public veid setAllergyDate(short position, byte date[*]) l
public byte[0..*] getAllergyDate(short position) \
public boolean validateAllergyPosition{ short position) \
i

\
=l Allergies_Impl

1
Attributes
private Allergy allergies[AllergiesSetup. MAX_ALLERGY_ITEMS]

Operations Redefined From Allergy
public vaid setDesignation(byte designation[0..*])
public byte[0.*] getAllergyDesignation(short position)

public byte[0..*] getDesignation()
public void setldentificationDate(byte date[0.])
public vaid setAllergyDate(short position, byte date(0..*]) public byte[0. %] getidentificationDate()
public byte[0.*] getAllergyDate(short position)
public boolean validateAllergyPaosition(short position)

=l Anlergy_Impl
Attributes
Bpetations private byte designation[AllergiesSetup. ALLERGY _CODE_LENGTH]

public Allergies_Impl{ SecuritySenvice security) private byte date[DATE_LENGTH]

Operations Redefined From Allergies Qperations
public void addAllergy(byte designation[0.."], byte date[0.."]) | _ _ = public Allergy_Impl{ byte designation[0..*], byte date[0..*])
public void removeAllergy(short position)
public shart countAllergies()
public void setAllergyDesignation(short position, byte designation[0.*])

Figure vii. Allergies module Class Diagram

34

<<interface>>

ElAppointments_Impl

Attributes

Attributes
private Appointment appointments[Appointments Setup. MAX_APPOINTMENT_ITEMS]

Operations
public void addAppointment(byte date[0..], byte how0.."], byte locall0..], byte doctoi0.."], bye type)
public void removeAppaintment(short position)
public void setAppointmentDate(short position, byte date[0..*])
public void setAppointmentHoun(short position, byte hour0.."])
public void setAppointmentDoctor(short position, byte doctorf0.."])
public void setAppointmentLocall short position, byte locall0..*])
public void setAppointmentStatus(shert position, byte status)
public byte[0..*] getAppointmentDate(short position)
public byte[0..*] getAppointmentHour{ short position)
public byte[0..*] getAppointmentDoctor(short position)
public byte[0..*] getAppointmentLocal(shert position)
public byte getAppointmentStatus(short position)
public void setAppointmentType(short position, byte type)
public byte getAppointmentType(shoit position)
public byte getAppointment!D(short position)
public short countAppointments()
public boolean validateAppointmentPosition|{ short position)

Operations
public Appointments_Impl(SecurityService security)

<<interface>>

Attributes
public short MAX_APPOINTMENT_ITEMS = 50
public short MAX_TYPE_CODES = 50
public byte STATUS_SCHEDULE = 0x00
public byte STATUS_CHECK_IM = 0x01
public byte STATUS_DONE = 0x02

Operations

<<interface>>

Attributes

COperations
public byte get!D[)
public byte[0.."] getDate()
public byte[0..”] getHour{)
public bytel0..*] getDoctor()
public byte[0.."] getlocalf)
public byte getStatus()
public void set!D(byte id)
setDate(byte datef[0..*])
setHour(byte hourf0.."])
setlocall byte locall0..”])
setStatus(byte status)
setDoctor{ byte doctorf0..%])
getType()
setType(byte type)

public void
public veid
public veid
public void
public void
public byte
public void

[0/ i From
addAppaintment(byte date, byte hour[0..*], byte local[0.*], byte doctor[0.*], bye type)
removeAppaintment(short position)
setAppaintmentDate(shart pasition, byte date(0.*])
setAppaintmentHour(short position, byte haur{0.*])
setAppaintmentDoctor(short position, byte dactar(0.."])
public vaid setAppointmentLocal(short position, byte local[0..*])
public vaid setAppointmentStatus(short position, byte status)
public byte[0.*] getAppointmentDate(short pasition)
public byte[0.*] getAppointmentHour(shart pasition)
public byte[0. *] getAppointmentDoctor(short position)
public byte[D.*] getAppointmentLacal(shart pasition)
public byte getAppointmentStatus(short position)
public void setAppaintmentType(short position, byte type)
public byte getAppaintmentType(short position)
public byte getAppointmentlD(short pasition)
public short countAppointments()
public boolean validateAppointmentPosition(short pasitian)

public void
public vaid
public void
public vaid
public vaid

T
I
I

v
Elappointment_Impl
Attributes
private byte id
private byte date[DATE_LENGTH]
private byte hour[HOUR_LENGTH]
private byte local[LOCAL_CODE_LENGTH]
private byte doctor[DOCTOR_CODE_LENGTH]
private byte status
private byte type
Cperations

public Appointment_lmpl(SecurityService security)

Cperations Redefined From Appointment
public byte getiD{)
public byte[0.*] getDate()
public byte[0..*] getHour()
public byte[0.*] getDactar()
public byte[0.*] getLacal{)
public byte getStatus()
public void setiD{ byte id)
public vaid setDate(byte date[0.])
public void setHour(byte hour[0.*])
public vaid setlocal(byte local[0.*])
public vaid setStatus(byte status)
public void setDoctor(byte doctar[0.*])
public byte getType()
public void setType(byte type)

Figure viii. Appointments module Class Diagram

35

suoyesadn

0 = HLONTT F1LL XvIA Pogs

091 = HIONIT NOILJIE0S3d X9 Hoys

(Jaziguondussama6 poys aygnd

09 =SIWAIl JISONDVIT XA Hoys

samqupy
([.0lann 240 JaniLizs pioA aland dmyassansoubeld o

()ap11sb [-0leiA augnd

(aiansoubelp 2140 Jaiansoubeimas pioa Jygnd
(Jansoubeimab 214q nand (qiansoubeip 2140 ‘gnuawiuiodde 214 Jazisuonduasagansoubelqiaf poys aignd
(30138414 UB3|00G J2s)0 Hous aung” szis poys ‘[oleung uonduasap 2)ig Juonduasaaies pioa ygnd (uomsod poys Jsglansoubeimab [, olapAg anond
(=zis poys ‘J2syo poys Juonduassmsb [olewia angnd [)sansouBeIg)i¥iunod uoys aignd
(anuawuodde s34g)gpusunuioddygss ploa aygnd (gnuaunuiodde =34n)sansouBeiqunos pous angnd
()apusunuioddyisb =34 aygnd (&zis Yoys ‘12540 Hoys 'glansoubelp 2)Ag ‘gpuaswuiodde 234g JuonduasagansouBeimysb [oleiAg angnd
IRSOUBEI(] W0 PAUYSPIY suoRelsdo (Qlansoubep 2140 ‘apuawiuiodde 234g Japi L ansouBeigeb [, ol214g aignd
([S3LAE H344NE Kw W uowwop]jen s1iq syngias proa aygnd [(3301@1511) UES|000 12810 POYS “131na ™ az1s Uoys ‘[, olizundg”uonduasap 2140 ‘gpnsoubelp s14g ‘apuaunuiodde 214q Juondussagansoubieimas pioa agnd
(begngisb [S31AE H344NE XN uowwoplsikg aygnd T~ (l."0J=nn 210 glagsoubelp a3Ag " apuawiuiodde s3Aa aplLansoubeidias pioa agnd
(apr P ahg ‘g dde a1Aq Jjdwy Beig aygnd (aiansouBelp a14q ‘gpusunuiodde 234q Jansoubelgaaowal ploa Jgnd

suopesado

[S3LA8"H344N8 Xvin uowwoglisyng eikq senud

(gnuaunuodde 2140)ansouBeigppe 2140 agnd

(7 Wio s}

[HL9NIT NOILdINOS3T X dnessansoubelgluonduassp eifq senid
[HLONTT I Xww dnisssonsoubeiglenn s1fq sjeaud
alonsoubep 81fq aeaud

(Aunass aowsghiunaeg Jjdwi sansoubeig agnd

suoyesadn

auawiuodde s14q speaud
sanquay

(ST DILSONOYIO XN dmagsaisoubeig]sansoubep msoubeiq aeand
sanqaty

_nE_Imu_umo:ww_n_m_

1dw ansoubeig =

(Jeziguonduosagial uoys oygnd

([olern 2¥q Jeruies proa oyqnd

(Jaiwsiob [, 0lswig aygnd

(o1 ad4q Jgjonsoubeiqies proa sgnd

(Jaionsoubeiqies sifg aygnd

(y20)gisuy uesjooq ‘jesyo poys Yayng ezis poys ‘[, g lleyng uondussap eifq Juonduosagies proa aygnd
(8z1s poys ‘jesyjo poys Juoidussegieh [, 0leifg oygnd

(gnuswuodde aiiq qnusunuoddyies proa oygnd

(Jgpuswyumoddyyel apig aygnd

el
(ar a¥q q g) X aJ 1B poys oygnd
(uorisod poys Jsqjansoubeiqial [, 0leig aignd
(Jsansoubergyyiunoo poys aygnd
(a 8 Jsonsoubeigiunca poys aygnd
(8zts poys Jesyo uoys ‘gonsoubeip s)iq g aiq Jucid goisoubeiqieb [, pleria aygnd

(gronsouberp el ‘gruswiuiodde ayiq et onsoubeiqisb [, olepa oygnd

(sj20/gisny uesjooq ‘Jesyo poys usyng ezis poys ‘[, o leyng uonduosep syl ‘gjonsoubep spfg ‘gusunuredde s)fq Juonduosagansoubelgies pioa oignd
([0lepm eifq “gronsouberp sifq g 1 s¥q JapitLal igies pioa aggnd

(gjovsoubelp apiq ‘gpuswiwodde a)iq Jonsoubeigesows: pioa sijgnd

(grusunjuiodde a)ig Joisoubeigppe a)ig oygnd

suopesedo swogeisdo
sanqrty sanqry
ansoubeig o sansoubeiq o

Figure ix. Diagnostics module Class Diagram

36

(Jaipsoubegyab
(glansouBielp 214 Jalansoubelmas
(Jaieuwaipapwyab
{ Qpuzpaw alka JalauRipanas
()21eC136
(l"0l=1ep 2340 Jaiemas
{ Jpouadizb Hous
(sAep Hoys Jpoladias ploa d
(Juonduasaguonensiuwpylab [, olaiig i
([oluonensiuwpe 214 JuondussaguonensiuiWpylas ploa Jngnd
(Juopeubisaiab [, olawia 2

([, oluopeuBisap 234q JuoneufisaCyas ploA
(Januawiesa]1a6 a14q 1
(gpuawiean 2140 JANUAWIEA1[185 PIOA 3
(Januswuoddyiab ka3
(gpuawiviodde 23140 Japuaunuioddylas pioa 2

auiNpay ol paunspay suoieiady

(giewaipsw a1dq ‘Quuswiesiy ajig ‘gonsoubelp a1fq ‘gpuswiuiodde s1fq)jdw| suiaipsy aijgnd
stonEIB00

qglansouBeip a1fq sieand
Qlaupaw a3k apeaud
[HLONZT 3Lvaleiep aifq sieaud
shep”pousd poys sjeaud
[H1ONTT NOILAIM2S3IA NIAAY Xy dniassaunipapuonduasap uonensiupe aifq aeand
[HIONIT 30007 IMI0TN dnassauiapaiyluoneulisap a14q ajeaud
Qgnuaiwiessy a1fq sjeand
anuawiuodde a1hq a1eand
sanquy

1dui suRIpe N

(glauzIpaw ;Ag ‘gpuaunean a14g 'gronsouBep 2140 ‘apuawiuiodde a1Ag Jaieab pioa angnd

(mep a140 ‘[olaEuiaipaw 2140 'gpualiead 2140 ‘glansoubielp a1Ag ‘gpuawiuiodde 2140 Jalemas pioa angnd

(glruzipaw a1ig ' gpuawieas 234q 'glopsoubelp 2Ag ‘gpuawiuiodde 234 Jpouadieb poys ongnd

(sAep™u/ polad Hoys ‘glauipaw 2340 ‘gRuawieaq 234 ‘gansoubelp 2340 ‘gpuawiuodde 23Ag Jpouadgias ploa agqnd

(gruzIpaw ;Ag ' gpualwiean 2140 'glansoubelp 2140 ‘apuawiuiodde a1Ag Juonduasaguonensiuiwpyisb [oleiAg aggnd

([oluonensiiwpe a1Aq 'giRupaw 3140 ‘gpuawiean 2140 ‘gpuawiuiodde a1Ag Juonduasaguonensiuiwpylas pioa ajgnd

(Qlaumipaw 2340 ‘gpuawgeal; a1ig ‘giansoubelp a1Aq ' gpuawiuiodde 2340 Juoneubisagyeb [, ol21da angnd

([, oluopeuBisap 2040 'gleuapaw 2140 'gpuawieady 2140 ‘glonsoubielp a1Ag ‘gpuswiuiodde 2140 JuopeuBisagias ploa agand

(anuauneas 2340 ‘aronsoufiein a1Ag ‘anuswnuiodde 214g Jsauaparpunoa wous aiand
(glauwzipaw 23Ag ‘guawgean aliq 'giansoubelp 234 ' gpuawiuiodde a3Ag Jaulzipapwasowal pioa aqnd

(uomsod woys Jsgrruaipawiab poys ajgnd

()sauipapiyunod yoys aggnd

(gnuawiean 2140 ‘qpnsoubeip 2140 ‘gpuawiuiodde a140 Jauipawppe 2140 angnd
wol (o]

(Awnzas azmwasAundag Jdwsauaipaly agnd
suoiesada

[SINTL INIDIOTN Xy dniagsauaipan]auiapall auapals ajeaud
sanqupy

1dw| " sauRpaN =

(L

(Jagyoisoubergieb a)fq aygnd

(gjansoubieip aiiq)gjoisoubelgies pron angnd
(Jaisuizipapiieb 2iq angnd

(gisuraipaw s)iq Jaieuoipspyies proa aygnd

(Jeeqieb |, oleiiq aygnd

([0lotep 2iiq Jaiequss proa angnd

(Jpousqisb uoys angnd

(s/fep poys Jpousgpes proa ajgnd

(Juoiduossguoiensiunupyial [, pjariq aygnd
g) wias proa agnd

(Juoieubissgial [, plevfg oygnd

([, 0luoneubisap sifq Juoneulissges proa aygnd
(Januewieai)sb ayfg oygnd

(gruawiiean s)iq Jguewiesiias proa agnd

(Janusunuioddyieb aifg angnd

Ny
(uomsod poys Jsgreuraipayyial joys oiygnd
(grauioipau a)ig g, 23q ‘gyo) a¥g) 21fq Jajegial proa ayqnd
([0lotep a3iq ‘qrauopaw aiig q, g g aYig g ayiq Jajegies proa oygnd

(grewaipaw apiq ‘gpuswiess) a)iq ‘gloysoubelp sifg ‘gluswutodde apfig Jpousgiel uoys aygnd

(sdep " pousd poys ‘grauaipew 8)iq grusuesl) a)iq gy afg ‘gjiuswur a)fg Jpousgies proa oignd

(gistioipaw apAq ‘gruswiean apfq ‘giansouben apfg q, aMg Juonduosag wisb [, olsifg aygnd

([0luonensiuvitpe a)4q ‘glewmaipa a)4q ‘qrusuwiean a¥q giuswiuiodde apig Juonduossquonensititupyias ploa aijgnd

(greuaipsw a)iq ‘gpuswiess) a)ig ‘gioysoubelp a)fg gruswiuredde a)iq Juoneubicsaqiel [, pleiig aygnd

([pluoneubisap siiq ‘glamsipaui aiig g, a¥iq ‘qya) a¥g ‘qg) 2fq) gies pioa signd
(Jsaursipapiiyiunos poys aignd

(gnuswiean a)iq ‘gjonsoubep ayfg ‘guswiumodde a)fg Jssuraipayyiunoa joys oignd

(greuraipsw el ‘gjuawiean sl ‘gjonscubep siiq g 1 a1fq Jaurapayy pron aygnd
(a aKq a¥g g odde 2)/q Jauiipajyppe 8¥q aignd
suonesado
somauy
SauIaIpail o

<<a2BHaU>>

suonEiatD

05 = IHONIT NOILAIF3S30 NINGY XAl Hogs J1qnd

(a dde aiig)a) wies proa oyqnd
suanmiado
021 = SW3Ll INIDITIN XN Hoys 31gn
sanquiy SapqLEY
UIAPSI o dnzasseulaipai of

<<alelU>>

<<arelBUE>

Figure x. Medicines module Class Diagram

37

}o Personal

Attributes
public short MAX_BLOODTYPE_CODES =8
public short NAME_MAX_LENGTH = 30
public short MAX_PASSPORT_LENGTH = 10
public short MAX_ID_LENGTH = 10
public short COUNTRY _CCODE_LENGTH =2
public short MAX_PHOME_LENGTH = 20
public short MAX_ADDRESS_LENGTH = 100
public short MAX_CITY_LENGTH = 25
public short MAX_FIPCODE_LENGTH = 10
public short MAX_SOCIALSECURTY LENGTH = 15
public short LANGUAGE_LENGTH =3
public byte MAX_GENDER_CODES = 0x02

Operations
public byte getName()
public void setName(byte name[*])
public byte getGender{)
public void setGender(byte gender)
public byte getBloodtype()
public void setBloodtype(byte bloodtype)
public byte[*] getBirthdate()
public void setBirthdate(byte date[*])
public byte[*] getPassport!D()
public void setPassportiDf byte passport!Df*])
public byte[*] getiD{)
public void setlD(byte id[*])
public byte[*] getNationality{)
public void setNationality(byte nationality[*])
public byte[*] getPhoneContact()
public void setPhoneContact(byte phone[*])
public byte[*] getRelativeContact()
public void setRelativeContact(byte phone[*])
public byte[*] getAddress()
public void setAddress(byte address[*])
public byte[*] getAddress City()
public void setAddress City(byte city™)
public byte[*] getAddress ZipCode()
public void setAddress ZipCode(byte postall*])
public byte[*] getAddress Country()
public void setAddress Country(byte countrny*])
public byte[*] getSocialSecurityNum()
public void setSocialSecurityNum{ byte socialNum[*])
public byte[*] getlLanguage()
public void setLanguage(byte language[*])
public byte[*] getBirthplace()
public void setBirthplace(byte birthcountry*])

ElPersonal_Impl

Attributes
private byte name[NAME_MAX_LENGTH]
private byte sex
private byte birthdate[DATE_LENGTH]
private byte nationality[COUNTRY _CODE_LENGTH]
private byte id[MAX_ID_LENGTH]
private byte passport[MAX_PASSPORT_LENGTH]
private byte address[MAX_ADDRESS_LENGTH]|
private byte city[MAX_CITY_LENGTH]
private byte country[COUNTRY_CODE_LENGTH]
private byte postalcode[MAX_ZIPCODE_LENGTH]
private byte bloodtype
private byte language[LANGUAGE_LENGTH]
private byte phone[MAX_PHONE_LENGTH]
private byte relativePhone[MAX_PHONE_LENGTH]
private byte social_security[MAX_SOCIALSECURITY _LENGTH]

Operations
public Personal_Impl{ SecuritySemvice security)

Operations Redefined From Personal
public byte getName()
public void setName(byte name[*])
public byte getGender{)
public void setGender(byte gender)
public byte getBloodtype()
public void setBloodtype(byte bloodtype)
public byte[*] getBirthdate()
public void setBirthdate(byte date[*])
public byte[*] getPassportiD()
public void setPassportlD(byte passportiD[*])
public byte[*] getlD()
public void setlD(byte id[*])
public byte[*] getNationality({)
public void setNationality(byte nationality[*])
public byte[*] getPhoneContact()
public void setPhoneContact(byte phone[*])
public byte[*] getRelativeCantact({)
public void setRelativeCaontact(byte phane[*])
public byte[*] getAddress()
public void setAddress(byte address[*])
public byte[*] getAddress_City()
public void setAddress_City(byte city[*])
public byte[*] getAddress_ZipCode()
public void setAddress_ZipCode(byte postal[*])
public byte[*] getAddress_Country()
public void setAddress_Country(byte country[*])
public byte[*] getSocialSecurityNum()
public void setSocialSecurityNum(byte socialNum([*])
public byte[*] getlLanguage()
public void setlanguage(byte language([*])
public byte getBirthplace()
public void setBirthplace(byte birthcountry[*])

Figure xi. Personal module Class Diagram

38

(yoo)geu) uBajoog ‘Jasijo NoYS Iajng azis poys [, olaung L

(Jezisuenepuswnossyial poys ojgnd

(Jajonsoubeiqiab proa aygnd

(gjonsoubeip aifg Jgonsoubeigies ayig ayqnd

(3215 poys Jasyo poys Juonepuawwoosygeapayieb [, gleiiq oygnd

ayg ploA aijgnd
(Jwejqoigyyesyies [, 0Jeifg oygnd
(L { 8)Aq Juigiqoidy pron oygnd

(Jajwsuneai)1ab a)iq sygnd
(gruswiean apfq Jauswiealjjss proa oygnd
(Jgpusuiuroddyysb spfq oygnd

(JazisuopepuswwoazEab poys agnd
(JalansouBeigiab pioa aggnd
(glansouBeip 214 Jgjansoubeigias 21Ag aignd
(azs Poys ‘12810 Uoys Juonepuawwodayeapaiab [, gl2Ag angnd
(20|@s1y UBa|ood 12540 HoYs ‘1ayng 2zis Yoys ‘[, ollagng uonepualiwoaal ajAq JUoepuawunIay|ealpappas pioA Jjgnd
(JwajgoiduneaHiab [-olaiia aiand
([olwalgoiduiieay a14g Jwa|ooiduiieaHias pioA aignd
(Januawneal13a6 2140 2iand
(anuawiean a3ig Japuawieal3as pioa Jiand
(Januawiuioddy=b =140 Juand
(anuzwuodde =23fg)apuzwiuioddyias pioa anand
WIBWIEEI | WO PBUNBNEY SUCIEISHD

(1531487834409 Xy uowwoD]jen aifq hayngias pion aygnd

(Jreyngiel (53108743440 X uowiweD ey 2

(gnusunealy aldg ‘gansoubelp a1fg ‘guuatnuiodde a1fg)jdw T uswiesl) aggnd
suonessdo

(a aya Ja deliyjzs plon oijgnd
suoResd0
suonesadg
samquay
SuaEaIL o] 9T = HIONI T NOIVANIARNOT3E IVOI0I XA 1ous S
<<3IBUEIUI>>
P =
JE it samquy
dnzassjuaweail o]
<<ajelal>>
(a @g ‘q, a¥q ‘q; aifg Hoys anqnd
(woiysod poys Jsgjuswieai a6 [, pleyq aygnd
(2zis poys ‘jesyo poys ‘g aq ‘g arlg g &g) web [, oleyq angnd
(320/gisi ueejooq ‘Jesye poys Jeyng ezis uoys [, plieyng afg 7, ayig g, aig gy ayiq Juor ipayyies pioa aygnd
(a ailg g a)fg ‘) aq Juiz(g 1. “ole¥q ongnd
(L. ol yesy siq 8iq g a)q @ g) ploA aygnd
(Jswawnesijjyiunoa poys ajgnd
(a aMa g aifg 11junoa yoys aygnd
(gwewiean ayfq ‘gionsoubelp apiq ‘gluswiutodde a)iq)juswesal [srowsl ploa angnd
A [gronsouben eifg ‘grueunuiodde s)iq Juswieal jppe 8)iq ayqnd
~w suonesadg
T~ -~ sangryy
S . SjusWIEAIL o]
T~ <caplaUls>

(531487 H344n8 Xy uowwohisyng sikq sjeand

Qlansoubelp 83fq sje

[HLONIT NOLLYANIWWOOIHTOIOIN Xy dnisgsiusues.] Juonepuswwoaa) sy ape;
[HLONZT W 1808 4HLTYAH Xy dmisgsuawieal Jwajqoigyiesy aiiq aje;

anusuies)y a1y 21e

anuawiuiodde 8)8g sjea

sanquyy

Idw| juswiest L[]

(20191841} UBSIOOG ‘J8SY0 LoYs ‘Usyng” azls Yoys ‘[, "olayng uojepuswwodsl alAg ‘[, olgnuswiean s14g ‘gjonsoubelp 814 ‘gnusunuiodde 2140 JuoepusWWoIaHEIPaAIES ploA J)qnd

(gpuawiealy 23Aq 'glansoubelp 214 ‘gpuswiuodde 214g JazisuopepuawwoIaSeapapReb voys agnd
(uoysod pous Jsapusunes. 126 [, ol=1Aq agnd
(2715 1oys 1250 Hoys ‘gpuawiean s14q ‘gansoubielp a14q ' gnusunuiodde 8)Aq JuopepuswiwoaaEeapapiet [, -olsisg aygnd

(anusunea. 14 ‘aRpsoubelp aAg ‘gnuaunuiodde s14g Jwajqolduiiea=b [.-olsia ayand

(L olwaigoiduiesy s 'L, olanuswiesn aia ‘glansoubelp 140 ‘gpuswiuiodde 3140 JwsiqolduliesHias pioa aiand
()sjuawieal] |vunoa woys aqnd

(ainsouBelp a4 ‘gpnuawiuiodde 23Ag Jsuauneal | junod Uoys Jljand

(gnuaunean alig ‘gansoubelp aykq 'gpuawnuiodde a1ig nuauneal | asowal pioa dqnd

(ginsoubelp ;Ag ‘guuawiuodde 234q Juswieal ppe 234 3jgnd

SJUBLESL | L0 PBUIBPSY SUOREIBID

(funaas aomagky

333)jdw|Tsaweal) angnd
suoqeiadg

[SIW3LTINIWLYIEL XN dniessuaueal | Jsuswiean uawileal | sjend
SANqLAY

Idwi"s3usuiReR. L 5

Figure xii. Treatments module Class Diagram

to vaccines <<interfaces>
Attributes [0 Vaccine
Operations Adtributes
public void addVaccine byte designation[0..”], byte date[0..*]) Operations
public void removeVaccine(short position) public void setDesignation byte designation[0.."])
public short countVaccines() public byte[0.."] getDesignation|)
public void setVaccineDesignation(short position, byte designation[0..*]) public void setVaccinationDate(byte date[0..*])
public byte[0..*] getVaccineDesignation(short position) public byte[0..*] getVaccinationDate()
public void setVaccinationDate{ short position, byte date[0..*]) i)
public byte[0..*] getVaccinationDate(short position) \
public boolean validateVaccinePosition(short position) *
A Elvaccine_Impl
1 Attributes
h private byte designation[VaccinesSetup. VACCINE_CODE_LENGTH]
, private byte date[DATE_LENGTH]
"’ Cperations
Elvaccines_Impl P public Vaccine_lmpl({)
Attributes // COperations Redefined From Vaccine
private Vaccine vaccines[VaccinesSetup MAX_VACCINE_ITEMS] / public void setDesignation(byte designation[0.*])
Operations /// public byte[0..*] getDesignation()
public Vaccines_lmpl{ SecuritySevice security) 7 public void setVaccinationDate(byte date[0.*])
Operations Redefined From Vaccines // public byte[0..”] getvaccinationDate()
public void addvaccine(byte designation[0..*], byte date[0.*]) /
public void removeVaccine(shart pasitian) c<interfacess
public short countvaccines() }© vaccinesSetup
public void setVaccineDesignation(short position, byte designation[0..*]) Attributes
public byte[0..*] getVaccineDesignation(shart position) public short MAX VACCINE_ITEMS = 50
public void setVaccinationDate(short position, byte date[0.*]) public short VACCINE_CODE_LENGHT = 4
public byte[0..*] getVaccinationDate(shart position) Cperations
public boolean validate\accinePosition(shart position)

Figure xiii. Vaccines module Class Diagram

8. Tools Manual

During the development of the Health Card application, we spent some time to research
and to acquire a minimum experience with JML and Java Card as well as managing the
necessary tools. First, although Java Card is a subset language of Java, we had to understand its
limitations, because Java Card isn’t extensive as Java, we had to learn what we could and what
we couldn’t do with Java Card. Next, we had to learn how to use the Java Card Remote
Method Invocation to establish a communication between external clients and the card
applications, and we had to learn how we could simulate a smart card, i.e., the creation of a
smart card, the execution of a Java Card application, and how to access the services supplied
by that application running in a smart card simulation. Finally, in what respects to our tool and
language research, we had to learn the JML basics and how to work with it as well as its tools.
In this section we describe how to setup and install the Java Card and JML tools, and how to
use them. The Health Card system was developed in a Windows Vista environment; therefore
the following described steps are related with it.

8.1. Java Card Installation and Usage

We already described the Java Card in Section Error! Reference source not found., but in
this section we present the tools needed for installing and using it, including some necessary
steps of its use in the card side and external side.

8.1.1. Installation and setup of Java Card

40

We start by referencing some of the tools needed for developing a Java Card application.
We used these tools to develop the Health Card application (card side):

e Eclipse version 3.2.2.1

e Java Card Development Kit version 2.2.2.2

e EclipselCDE, Eclipse plug-in >

The Eclipse is an Integrated Development Environment (IDE) that supports the

development of software applications in various programming languages, and also supports
the IDE extensibility through the installation plug-ins. To install it, you just need to download it
and extract it to a system directory, for instance “C:\”. The Eclipse will be ready to use
afterwards.

We have also used the Java Card Development Kit (JCDK) that comes with tools and
libraries necessary for the development and testing of Java Card applications. To install it, one
has to download it and extract it to a system directory, for instance it could also be “C:\”, and
next one has to setup the environment variables of the OS and add the following lines
(assuming that JCDK is installed in “C:\”):

e JC HOME : C:\java_card kit-2 2 2
e Path: %JC_HOME%\bin

We also installed the EclipseJCDE plug-ins (http://eclipse-jcde.sourceforge.net/) for the

Eclipse IDE. The Eclipse plug-in allow to apply AID (Application Identifiers) to Java Card class
packages and to applets, generate scripts from those packages and execute them by wrapping
their APDU commands to communicate with a smart card simulator. Without this plug-in the
process of writing the scripts would take much longer and would be tiresome. To install the
plug-in, one should download it and uncompress it into the plug-in directory of the Eclipse
installation directory. Then, one has to initiate Eclipse and setup the Java Card directory in
“Java Card - Preferences” then fill it in “Java Card Home”. This has to be the directory where
we installed the Java Card Development Kit. [31] In the following we describe some of the
features of the plug-in in more detail.

EclipseJCDE has two functionalities for applying AIDs to Java Card packages and applets.
These are the “Set Package AID” and “Set Applet AID”. Each Java Card applet and package on a
card is uniquely identified by an Application ID (AID), by this mechanism one can select the
applets to be used when executing the card applications. [2] Also, the EclipseJCDE has three
more tools to process the Java Card class files into optimized formats for smart cards. These
tools are a CAP (Converted Applet) file converter, a script generator and a script runner. The
CAP file converter, labelled as “Converter” is used to convert Java Card class files into CAP files
to be fitted into smart cards. The CAP file is a JAR-format file that contains the executable
binary representation of the classes in a package. The CAP format is a highly optimized binary
format for Java Card systems. Also the Converter generates other two optional files, an EXP

! Eclipse IDE: http://www.eclipse.org/downloads/
2 Java Card Development Kit: http://java.sun.com/products/javacard/
® Eclipse)CDE, Eclipse plug-in: http://sourceforge.net/project/showfiles.php?group id=176931

41

http://eclipse-jcde.sourceforge.net/
http://www.eclipse.org/downloads/
http://java.sun.com/products/javacard/
http://sourceforge.net/project/showfiles.php?group_id=176931

and a JCA file. An EXP file is a Java Card export file that contains the public API linking
information of classes in a package, and a JCA is a Java Card assembly file, which could be used
to regenerate a CAP file. Besides the converter tool, the EcpliseJCDE plug-in provides a script
generator tool, labelled as “Generate Script”. This script generator produces APDU script files
with APDU commands to install applets and packages into the smart cards. Finally, the last tool
provided by the plug-in is a script runner labelled as “Run Script” that has the function of
sending APDU commands from the scripts generated by the previous tool. [32] One must
notice that all this tools for processing the Java Card classes are base in tools provided by the
JCDK. The plug-in tools are automatic and easies the process of AID appliance, cap file
conversion and script files generation.

The EclipseJCDE plug-in also provides two tools used for simulating a Java Card environment
of smart cards. These tools are C Reference Implementation Simulator (CREF) and Java Card
Workstation Development Environment (JCWDE). These two tools are available in the JCDK, but
one has to use them through command lines. The CREF is implemented in C language and
supports the execution of Java Card applications, but it doesn’t permit debugging. Through the
use of CREF one creates an image file simulating a smart card with the applets installed and a
memory space included for holding data. The JCWDE is developed in Java and supports
debugging, but it is too limited as it doesn’t create any image file of the smart card and itisn’t
possible to store data while simulating the card execution. In our work we decided to use the
first simulating tool, the CREF, because it provided us with a smart card image where we could
store data for posterior tests, i.e., we could store information and later read it through the use
of external applications. Also one must notice that we have used the CREF tool through
command line rather than the graphical version from the plug-in. The reason of this choice was
because of the lack of documentation on how we could use the tool through the plug-in, and
the difficulty on using by ourselves.

8.1.2. Using the Java Card

After installing and setting up the Java Card environment and its tools, we describe the Java
Card usage in the card side and client (external) side.

8.1.2.1. The card side

Using the Eclipse and after installing the EclipseJCDE, for creating a new Java Card project
one must choose the option “Java Card Project” and give it a name. The needed libraries for
developing Java Card applications are automatically added to the project. After implementing
a functional Java Card application, one has to compile the Java Card files and has to process
them into a format optimized for smart cards.

First, it's necessary to apply an AID to the applet and packages to uniquely identify them.
This can be done through the use of “Set Package AID” and “Set Applet AID” from the
EclipseJCDE plug-in. One must notice that the external applications calling the card services
from a certain applet must have the same applet AID in their code mechanisms to select a
remote applet. The AID is used by external applications to select the respective card applets. In
case of having multiple packages, each one of them must have a unique AID, otherwise it will
cause conflicts and it won’t be possible to convert them into CAP files. [32]

42

Having applied the AIDs, one compiles the Java Card files like normal Java files. Then one
has two options while using the EclipseJCDE plug-in to optimize the files for smart cards. First,
one can convert the compiled classes to CAP, EXP and JCA by using the “Converter”. By
selecting each package, one right click on them and chooses “Java Card Tools = Convert”,
then the tool outputs three files CAP, EXP, and JCA. Having these files one has to generate the
APDU scripts with APDU commands for the applet installation in the smart cards. The second
option is more direct and faster, because when using the APDU script generator when
selecting the packages, the conversion to CAP, EXP and JCA files is made automatically. To
generate the APDU scripts one must select each package and by clicking the right button one
chooses “Java Card Tools = Generate Script”. This procedure must be done for each package,
beginning by the least dependent packages, i.e., if package A depends on package B, one must
generate the script of B first. In the end of this process we have the script files and the CAP,
EXP and JCA files. The script files created are the “create-<applet name>.script” and “select-
<applet name>.script” for the package containing the applet and “cap-download.script” for
each package.

After generating the script files we have to edit manually the “cap-download.script” of each
package. This is basically needed for completing the script that is necessary for sending
installation APDU commands into the smart card. For the script files from the package
containing the applet, in the “create-<applet name>.script”, we have to copy the line referent
to the applet creation, i.e., the APDU command line below the comment “// create <applet
name> applet”, and then we have to paste it in the “cap-download.script” of the same package
just before the APDU command “0x80 0xBA 0x00 0x00 0x00 0x7F;” and the “powerdown” lines
at the end of the file.

The next step, if the Java Card application has multiple packages, is more complex. For each
package’s script file “cap-download.script”, and beginning from the least dependent package,
we have to copy all the APDU commands between the “powerup” and “powerdown” lines and
then we have to paste it in the same script file where we pasted the create line, i.e., in the
“cap-download.script” from the applet’s package. We paste it after the “powerup” line and
before the “// select the installer applet” line, moreover those pasted scripts must be ordered
by the dependency level of each respective package, i.e., if package A depends on package B,
then we have to paste the script lines of B after the “powerup” line and then we have to paste
the script lines of A after the script lines of B.

After creating and editing the scripts we end up with a single script file containing the APDU
commands from all other scripts. From this point we can execute this script to install the Java
Card applet into a smart card or a Java Card environment simulation (i.e., image file simulating
a smart card). To simulate a Java Card environment, where we can download the script, we
can use the CREF or the JCDWE tools. We have decided to use CREF instead of JCDWE because
with the first one it is possible to create an image file where we can store and retrieve later
information like it was a smart card, making it a useful way for testing the application before
downloading it for a real smart card.

Using the CREF tool through command line we create an image file which waits for the script
downloading. First we write by command line the following command “cref —o <image file
name>", and then the execution of CREF waits for the script downloading. Next, through
Eclipse we select the script containing the APDU commands and by right clicking we choose
“Java Card Tools = Run Script” to download the script into the image file to install the Java
Card application. If all ends well, after downloading the script, we have created the image file
simulating a smart card that contains the Java Card application.

43

When running external Java applications to access the image file, like it was a smart card,
we use the CREF tool, but the command line given is “cref —i <image file name>". The
execution of CREF waits for external APDU commands sent to the simulated smart card. The
command “~i” makes the image file readable, but we can make the image file permanently
writable (i.e., to hold information after the execution) by adding the command “-0”, making
possible to store permanently the information inserted in the image file, during the simulation
(i.e., “cref —i —o <image file name>").

Next we describe the use of Java Card in external applications, i.e., the client side.

8.1.2.2. The client side

The client side or external applications that will communicate with the card can be
implemented in normal Java language, but one has to include the following Java Card
Development Kit libraries into the project: apduio.jar, jcclientsamples.jar and
jermiclientframework.jar. Also, one must notice that the AID used for selecting a card applet
must be equal to the one given in the card side. This AID in the client side is given through the
selecting mechanism code in the client programming.

Having in mind that this is a system implementing the Java Card RMI (Remote Method
Invocation), for each remote interface of the card application, it must be created a stub of
their implemented remote objects. This stub must be present in the card side applications to
be possible a communication between the client side and the card side (i.e. server side). To
create a stub we present the following command line example: - “rmic -classpath
C:\java_card_kit-2_2 2\lib\javacardframework.jar;. card.Personal_Impl” — where following the
—classpath we write the path to the needed Java Card library and “.” to refer the directory of
card where the compiled class Personal _Impl is. The directory card is the package where
Personal_Impl is and Personal_Impl is the implementation of the remote interface Personal
from the card side. The result of this command line is the creation of a stub file of
Personal_Impl.

After creating the stubs, we copy them and the remote interfaces to the client side. In our
case we have done a *.bat file to execute all this command lines and copy the files
automatically, as it is a tiresome task. At this point we have all prepared to execute the
external application and establish a connection with the card side, the only thing necessary
before running the client applications is to use the CREF tool to execute the image file to
simulate the insertion of a real smart card.

8.2. JML Installation and Usage

In this section we describe the tools needed for installing and using the Java Modelling
Language as well as some necessary steps of its use.

8.2.1. Installation and setup of JML
The following tools are necessary to install and use de JML:

e Java Runtime Environment version 1.4.* (JML only works with this version)

44

e Eclipse version 3.4.1. (The only compatible version with the existing JML plug-ins for
Eclipse.)

e JML Common Tools * (we used version 5.4.)

e JML2 Eclipse Plug-in Project

e JUnit3’®

This Eclipse IDE used for working with JML is a different version to that used for working
with Java Card. This is because of each plug-in of Java Card and JML being neither compatible
with the same Eclipse version. We had to write the JML specifications and Java Card code in
the Eclipse version with the JML plug-in installed, and the Eclipse version with the Java Card
plug-in installed was only used for writing the Java Card applet and security coding, and
running the Java Card application. To install the Eclipse we only have to download it and
extract it in a directory.

The JML Common Tools is a suite of basic tools for supporting the JML usage. We have
already described it in Section Error! Reference source not found.. To install the JML Common
Tools we need to download them and extract them in a directory (for example, “C:\JML”) and
next we have to setup the necessary environment variables of the OS as it follows:

e Path: %IML_HOME%\bin
e JML _HOME : C:\JIML

And, in the classpath environment variable we have to add the following:

o _.JML\bin\jml-release.jar; ...j2rel1.4.2_18\lib\rt.jar; ..j2rel1l.4.2_18\lib\sunrsasign.jar;
.j2rel.4.2_18\lib\jsse.jar; ...j2rel1.4.2_18\lib\jce.jar; ...j2rel.4.2_18\lib\charsets.jar;
..j2rel.4.2_18\classes; ..JML\specs\; ..JML\org\imlspecs\models; ..java_card_kit-
2_2 2\lib\api.jar

One must notice that we have also installed Java Runtime Environment version 1.4.2. -
update 18, because it was the latest compatible version with the most recent version of the
JML Common Tools (at the time it was 5.4.). At last, we have to make sure that the Eclipse has
the JUnit 3. The JUnit 3 is needed for executing the Runtime Assertion Checking. The JUnit is a
unit testing framework for the Java programming language and along with the jmlunit tool
from JML Common Tools we can make runtime assertion checks. For more information about
Runtime Assertion Checking and used tools, see Section Error! Reference source not found..

The JML2 Eclipse Plug-in Project is an Eclipse plug-in that integrates the JML Common tools
into the Eclipse. Through this plug-in, the process of writing the JML specifications is easier,
especially its functionality of checking the JML syntax while writing the specifications. To install
this plug-in we have to start Eclipse and then we have to go to “help = software updates... 2>
Available Software > Add Site”. In there we insert the following website
http://www.pm.inf.ethz.ch/research/universes/tools/eclipse/ to obtain the IML2 Eclipse Plug-

in Project.

* The JML Common Tools: http://sourceforge.net/projects/jmlspecs/files/
5 . . .
JUnit: http://www.junit.org/

45

http://www.pm.inf.ethz.ch/research/universes/tools/eclipse/
http://sourceforge.net/projects/jmlspecs/files/
http://www.junit.org/

To setup the automatic JML checker for automatically make the static checking of JML
specifications we have to right click on a project and select Properties, the we have to select
“JML2 Plug-in = Automatically run JML2 Checker”. Now the Eclipse will warn the developer
when he makes any JML syntax mistake while writing the specifications, and also makes
automatically a static checking of the JML specifications and the Java code. This plug-in has a
tool for static checking labelled as JML2 checker” and has another tool for compiling java code
with jml specification labelled as “JML2 compiler”. These two tools are based on the JML
Common Tools jml for the static checking and the jmic for compiling. We were particularly
interested in the use of the automatic JML2 checker tool as it facilitated our work while writing
the JML specifications.

Also, before using this Eclipse plug-in for working with JML we need to include the following
libraries into the Eclipse project:

..JML\bin\jml-release.jar

... IML\specs

... java_card_kit-2_2_2\lib\apduio.jar
...java_card_kit-2_2 2\lib\api.jar

8.2.2. Using the JML Common Tools

The JML Common Tools are described in Section Error! Reference source not found.. To
use the JML Common Tools we may execute the jm/-release.jar to launch a graphical version,
or we can use its tools through command lines.

Once we have Java code specified with JML we may use the jm/ tool from the common
tools to make a static assertion checking. The alternative way of making a static assertion
checking is to use the automatic tool supplied by the JML2 Eclipse Plug-in. This alternative is
better because while one writes the JML specifications, the tool checks automatically.

To compile Java files with JML we can use the plug-in function “JML2 Compiler” or we can
compile through the jmlic tool from the common tools. This compiles like the compilation of
normal Java files but with the addition of JML. The compilation is necessary before executing a
runtime assertion checking. If using the jmlc to compile, one has to copy and paste the
resulting class files to the “../bin” directory of the working Eclipse project and replace any
previous compiled file. By default the compiled files are put in the bin directory and we have to
replace those compiled files because normally the Eclipse compiles automatically as normal
Java files when we save the changes in the code (or in JML specifications).

To make a runtime assertion checking of the JML specifications and implementation code
we have to generate the testing files and provide some test data, after compiling the Java files
with JML. This process is described in Section Error! Reference source not found..

8.2.3. Other Tools for JML

Besides the tools that we described and used, there are other tools that allow us to test and
verify Java code with JML specifications.

46

8.2.3.1. Krakatoa

The Krakatoa is a verification tool for Java/Java Card programs specified in JML. This tool
focuses on verifying the correctness of implementations according to pre and post-conditions
(specified in JML) and class invariants. This tool is from the Why platform for deductive
program verification (this platform includes tools for software verification in Java and C
languages). The Krakatoa has three components [33]:

e The Krakatoa tool, to read the Java/lava Cards and produce their specifications for Coq
and a representation of semantics of the Java/lava Card program into Why’s input
language.

e The Coq proof assistant, for specification modeling and development of proofs.

e The Why tool, for computing proof obligations for a core imperative language
annotated with pre and post conditions.

8.2.3.2. ESC/Java2

The Extended Static Checker for Java version 2 (ESC/Java2) is a programming tool statically
checks for common run-time errors in JML-annotated Java programs. The static check is made
by a static analysis of the program code to verify if it meets with its formal annotations. The
amount and kinds of static checks can be controlled by the users. The Users can control these
checks that ESC/Java2 performs, by annotating their Java/lava Card programs with specially
formatted comments called pragmas [17].

ESC/Java2 can be used through three forms:

e The ESC/Java2 built into the Mobius Program Verification Environment®, which is is
integrated with Eclipse.

e The ESC/Java2 as a command-line tool” with a simple Swing GUI front-end.
e The ESC/Java2 as an Eclipse 3.5 plug-in®.

82.33. JACK

The JACK (Java Applet Correctness Kit) tool also provides an environment for verification of
lava/lava Card applications specified with JML. This tool makes an automated weakest
precondition calculus that generates proof obligations from annotated Java or Java Card
sources. Later, these proof obligations can be proven through different theorem checkers (for
example, the Coq proof assistant).

The JACK developers claim that the most important design goal of JACK is that it is easy to
use by normal Java developers to validate their own code. That is, the JACK tool is design to
hide mathematical complexity of the underlying concepts, simplifying and facilitating the Java

® Mobius Program Verification Environment: http://kind.ucd.ie/products/opensource/Mobius/
7 ESC/Java2 command-line version, source and binary versions:
http://secure.ucd.ie/products/opensource/ESClava2/download.html

8 ESC/Java2 plug-in for Eclipse 3.5: http://kind.ucd.ie/products/opensource/Mobius/updates/

47

http://kind.ucd.ie/products/opensource/Mobius/
http://secure.ucd.ie/products/opensource/ESCJava2/download.html
http://kind.ucd.ie/products/opensource/Mobius/updates/

programs verification. The JACK provides a graphical viewer that presents the proof obligations
connected to execution paths within the verified program, where for each proof obligation,
the related source code is highlighted. The JACK tool is available as an Eclipse IDE plug-in’. [34]

82.34. JMLE

The jmle tool is a Java based tool created by Professor Tim Wahls and Ben Krause. This tool
is available in the latest JML Common Tools pack and it is an adaptation of the jmlic tool (the
JML tool that generates runtime assertion checking code, see Section Error! Reference source
not found.) in order to compile specifications written in JML by translating them to constraint
programs, which are then executed via the Java Constraint Kit (JCK)*® which is a system for
creating Java implementations of constraint solvers. One important thing to notice is that the
jmle tool ignores completely any Java code in method bodies when compiling Java or JML files,
as its purpose is only to make the JML specifications executable. Having executable
specifications makes the formal specifications more useful and easier to develop.

The jmle automatically compiles JML specifications to JCK programs as follows: - a JML class
specification is compiled to a Java class, then only the specification model fields become actual
fields of this Java class and each JML method specification is compiled to a method
implementation. After compiling the specifications, they can then be executed using normal
Java “driver” code along with JCK libraries that creates an instance of the class and calls its
methods, by writing JUnit tests for the class specification, or in any other manner that a hand-
coded implementation could be used. [35]

The main difference between the use of the jmle and jmlc tools is that the jmle only
compiles JML specifications for making them executable, while jmlc compiles Java code with
JML specifications for runtime assertion checking.

° JACK tool and its Plug-ins for Eclipse IDE: http://www-sop.inria.fr/everest/soft/Jack/download.html
1% java Constraint Kit libraries: http://www.pms.ifi.lmu.de/software/jack/index.html

48

http://www-sop.inria.fr/everest/soft/Jack/download.html
http://www.pms.ifi.lmu.de/software/jack/index.html

